First we solve the standard Ramsey model as a baseline case.

1 Standard Ramsey Model
Rewrite the expression of % into log-linearized form
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Applying first order Taylor expansion to these two equations around steady state,
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For simplicity, rewrite the linearized system as
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To find the eigenvalues of matrix A, solve
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for A and this gives
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showing the existence of saddle path (Air is the stable solution), and the subscript R

denotes standard Ramsey model.

2 Ramsey Model with Labor / Leisure Choice
Rewrite the dynamic system using the result of question c)
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then rearrange to get
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Rewrite these two equations into log-linearized form
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Applying first order Taylor expansion to these two equations around steady state,



it’s simple to get §
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For simplicity, rewrite the linearized system as
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To find the eigenvalues of matrix A, solve
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for A and this gives
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showing the existence of saddle path (A; is the stable solution). Moreover notice that A4
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differs from A;r only by the term and this term is larger than 1 since @ < 1. Then

[A1] > ARl

suggesting that the speeds of convergence for &(t) and k(t) are higher than those for the
standard Ramsey model.



