Liquidity, Business Cycles, and Monetary Policy (Kiyotaki & Moore, 2008)

Jin Cao¹

¹Munich Graduate School of Economics, Department of Economics, Ludwig-Maximilians-Universität München

Macroeconomics Reading Group (WS08/09)
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Successful stories of RBC models

- $AR(1)$ technological shock $\ln z_{t+1} = \rho \ln z_t + \epsilon_{t+1}$ upon a simplest RBC model (c-green, y-blue, i-red)
However, caveat...

- The successful story relies on large, persistent and exogenous aggregate productivity shock.
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Step 1: Modelling credit system in RBC models

- Endogenized credit limits (in contrast to Bernanke & Gertler, 1999) may act as a propagation mechanism, after a small & temporary productivity/wealth distribution shock.

Features:

- Credit constraints because of incomplete contract, i.e. debts are not enforceable unless secured by collateral;
- Collateral: Future returns from present investment;
- Feedback: Temporary productivity shock → less collateral value → cut back investment to pay debts → persistence: slow recovery.
- However, “all-purpose good”, no clear definition for liquidity.
Step 2: Monetary economy, liquidity, and policy

- Based on the endogenous credit system, introducing money. Then
 - Money as an anchor to define all assets’ liquidity;
 - Role of monetary policy in liquidity-induced business cycles;

- However, more new problems than solved
 - Why are agents willing to hold money (essentially paper IOU, or fiat money)?
 - Portfolio of money and physical capital in business cycle?
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Preference and technology

- Representative agent’s problem: Consumption, investment, output, debt

\[
\max \{c_{\tau}, x_{\tau}, y_{t+1}, b_{t+1}\}_{\tau=0}^{+\infty} E_t \left[\sum_{\tau=0}^{+\infty} \beta^{\tau} \ln c_{t+\tau} \right].
\]

- Heterogenous in productivity: Productive \(y_{t+1} = \alpha x_t \), or unproductive \(y_{t+1} = \gamma x_t \) with \(1 < \gamma < \alpha \).

- “Transition matrix”:

\[
\begin{bmatrix}
1 - \delta & \delta \\
 n\delta & 1 - n\delta \\
\end{bmatrix}.
\]
Resource constraints and credit constraint

- (Intertemporal) Flow budget constraint: \(\forall t \)
 \[c_t + x_t = y_t + \frac{b_{t+1}}{r_t} - b_t; \]

- (Intratemporal) Resource constraint: \(\forall t \)
 \[C_t + C_t' + X_t + X_t' = Y_t + Y_t'; \]

- Borrowing (collateral) constraint: \(\forall t \)
 \[b_{t+1} \leq \theta y_{t+1} \text{ with } \theta \alpha < \gamma. \]
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Collateral: A proportion of the future returns from present investment. In equilibrium, productive agents borrow up to the credit limit.

When a temporal negative productivity shock reveals at t and all agents’ net worth declines

- Productive agents have more accumulated debts, net worth falls more;
- More investment’s cut back from productive agents;
- After t, slow recover of productive agents’ net worth and aggregate production.
Equilibrium analysis

- To highlight the importance of credit constraint, assume that δ is high and n is low

$$\delta > \theta \frac{\alpha - \gamma}{\gamma - \theta \alpha - n \theta \gamma};$$

- Then risk-free interest rate $r_t = \gamma$.
- The share of net worth of productive agents (R — rate of return on saving for productive agents)

$$s_{t+1} = \frac{(1 - \delta)R_s + n \delta \gamma (1 - s_t)}{R_s + \gamma (1 - s_t)} \equiv f(s_t).$$
Equilibrium analysis (cont’d)

- Transitional path after a temporary positive productivity shock
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Agents, preferences, and technology

- Heterogenous agents: Entrepreneurs and workers. Fiat money with fixed supply M.
- Entrepreneurs’ problem

$$\max E_t \left[\sum_{s=t}^{\infty} \beta^{s-t} \ln c_s \right], \text{ with}$$

$$y_t = A_t (k_t)^{\gamma} (l_t)^{1-\gamma}, \quad y_t - w_t l_t = r_t k_t, \quad \text{as well as}$$

$$k_{t+1} = \lambda k_t + i_t \text{ with probability } \pi \text{ (productive).}$$

- Neoclassical production function, competitive goods market.
Credit constraint, liquidity, and resource constraint

- Again, credit constraint $b_t \leq \theta i_t$;
- (Productive entrepreneurs’) Funding through issuing equity n_t

\[n_{t+1} \geq (1 - \theta) i_t + (1 - \phi_t) \lambda n_t \text{ with } m_{t+1} \geq 0; \]

- And liquidity out of “resaleability constraint”: Only fraction of ϕ_t equity can be sold for money;
- Resource constraint (Equity price q_t, price of money p_t)

\[c_t + i_t + q_t (n_{t+1} - i_t - \lambda n_t) + p_t (m_{t+1} - m_t) = r_t n_t. \]
Agents, preferences, and technology (cont’d)

- Workers’ problem

$$\max E_t \left\{ \sum_{s=t}^{+\infty} \beta^{s-t} u \left[c'_s - \frac{\omega}{1+\nu} \left(l'_s \right)^{1+\nu} \right] \right\},$$

- Resource constraint

$$c'_t + q_t (n'_{t+1} - \lambda n'_t) + p_t (m'_{t+1} - m'_t) = w_t l'_t + r_t n'_t \text{ with } n'_{t+1} \geq 0 \text{ and } m'_{t+1} \geq 0.$$

- Inalienable human resource: No investment chance!
Equilibrium analysis: Two cases

- **Case 1**: Money is useless when equity is liquid enough

\[
(1 - \lambda) \theta + \pi \lambda \phi > (1 - \lambda)(1 - \pi);
\]

- **Case 2**: Money is valuable when

\[
0 < \pi \lambda \beta^2 (1 - \phi)(1 - \pi)[(1 - \lambda)(1 - \pi) - (1 - \lambda)\theta - \pi \lambda \phi] \\
+ [(\beta - \lambda)(1 - \pi) - (1 - \lambda)\theta - \pi \lambda \phi][1 - \lambda + \pi \lambda - (1 - \lambda)\theta - \pi \lambda \phi] \\
\cdot [\lambda (1 - \beta)(1 - \pi) + (1 - \lambda)\theta + \lambda (\beta + \pi - \pi \beta)\phi].
\]
Equilibrium analysis in monetary economy

- In steady state, workers choose to hold neither equity nor money;
- The price of money $p_t > 0$;
- Productive entrepreneurs face the binding liquidity constraints and will not choose to hold money, $m_{t+1} = 0$;
- Unproductive entrepreneurs choose to hold a portfolio with money, $m'_{t+1} > 0$ and equity. Trade off:
 - Probability to become productive — Money is most liquid for investments;
 - Probability to stay unproductive — Equity holdings to maximize returns.
Outline

Motivation
Beyond successful stories of RBC models
Solution: Including liquidity in RBC models

Baseline Model: Endogenized Credit System
Model specifications
Equilibrium

Extension: Liquidity, Business Cycles, and Monetary Policy
Money and liquidity in a monetary economy
Dynamics and monetary policy
Dynamics under cyclical technological shock
Government in the monetary economy

- Inefficiency of monetary economy with liquidity constraint: Fluctuations in consumption. Role for government?
- Government intervenes the economy through equity — Open market operations, i.e. buying (selling) equity via issuing (taking in) money.
- Flow budget constraint

\[
G_t + q_t \left(N_{t+1}^g - \lambda N_t^g \right) = r_t N_t^g + p_t \left(M_{t+1} - M_t \right) \quad \text{with}
\]

\[
K_t = N_t^g + N_t.
\]
Optimal monetary policy
Summary

- A compact, tractable framework of modelling liquidity in a typical macro framework.

- Key features:
 - Incomplete contract based credit system, collateral proportional to net worth;
 - Liquidity issues arise from resaleability constraint, with money as value-transfer medium upon wealth distribution shocks.

- Unsolved issues:
 - More instruments for monetary policy, e.g. interest rate?
 - Beyond no-default equilibrium: Modelling financial crisis as a crash state (à la Rietz)?
Kiyotaki, N. and J. Moore
Liquidity, Business Cycles, and Monetary Policy.
Mimeo, Princeton University, 2008.

Kiyotaki, N. and J. Moore
Evil is the Root of All Money.