Principles of Banking (II): Microeconomics of Banking (4) Credit Market

Jin Cao
(Norges Bank Research, Oslo & CESifo, München)
Outline

1. Introduction

2. Credit Rationing in Market Equilibrium
 - Adverse selection and credit demand
 - Credit supply and credit rationing
(If they care about what I say,) the views expressed in this manuscript are those of the author’s and should not be attributed to Norges Bank.
Bank-borrower relationship

- So far we have focused mostly on *liability side* frictions
 - Uncertainty in depositors’ liquidity preference leads to *liquidity risk*, and principal-agent problems imply that *capital* is needed to align banks’ incentives;
 - With a little touch on asset side: *liquid assets* needed to buffer liquidity shocks;
- However, main problem on asset side is banks’ decision on risky loans, or *bank-borrower relationship*
 - Obviously plagued by *uncertainty* and *asymmetric information*;
 - Which lead to *credit risks* in banking.
Loanable funds and credit rationing

- A result of such frictions is the puzzling credit rationing phenomenon
 - Borrowers’ demand for credit is higher than available loans provided by banks ("unsatisfied fringe of borrowers", Keynes, 1930);
 - Some borrowers’ demand is turned down even if they are willing to pay higher interest rate for loans;
- Is it consistent with basic demand and supply analysis
 - Given that banks are profit-maximizing?
 - Any implication on banks’ risk-taking incentives?
Credit rationing obviously happens in temporary market disequilibrium: e.g., frictions that prevent market from quickly adjusting to shocks;

Credit rationing can emerge as a permanent phenomenon in equilibrium: increasing loan rate leads to

- Higher interest income from loans, but
- Riskier projects chosen by borrowers due to adverse selection;
- Profit-maximizing loan supply balances these two effects, with implied loan rate lower than market clearing rate;

We’ll focus on the second type of credit rationing.
Agents, technology and information

- There are many risk-neutral entrepreneurs in the economy, each
 - Has a project which needs initial investment k;
 - Has wealth $W < k$: needs to borrow $L = k - W$ to start the project;
 - Has an outside option: deposit in banks with safe return δ;
- Projects are identical in rate of return, but different in risk. For entrepreneur i’s project:
 - Returns R_i if successful, with probability p_i (with probability density function $f(p_i)$); zero otherwise;
 - Expected return $R_0 = R_i p_i$ is identical for all projects;
 - Likelihood of success p_i is entrepreneur’s private information.
There are risk-neutral banks in the economy

- Issue loan L to each entrepreneur who wants to start projects;
- Do not know p_i of each entrepreneur;
- Compete in deposit market, maximizing gross return to depositors;
- Charge uniform loan rate r to maximize gross return. Assume $R_i > (1 + r)L$ for all entrepreneurs: loans are fully paid when projects are successful; zero otherwise.

There are depositors (not explicitly modelled), whose aggregate supply of deposit $d(\delta)$ is an increasing function of deposit rate δ.
Credit demand

- The expected return to individual entrepreneur is
 \[E[\pi_i] = p_i[R_i - (1 + r)L] = R_0 - p_i(1 + r)L \geq (1 + \delta)W; \]
 \[p_i \leq \frac{R_0 - (1 + \delta)W}{(1 + r)L} = \bar{p}(r); \]

- The participation constraint implies
 - Only risky entrepreneurs with \(p_i \leq \bar{p}(r) \) will borrow;
 - And \(\frac{d\bar{p}(r)}{dr} < 0 \) implies higher loan rate increases the riskiness of loans: adverse selection.
The aggregate demand of loans is decreasing with \(r \), and with \(\frac{d\bar{p}(r)}{dr} < 0 \) this gives the demand curve for loans:

\[
D(r) = L \int_{0}^{\bar{p}(r)} f(p_i) \, dp_i,
\]
Equilibrium loan rate and credit supply

- The banks’ decision problem is

\[
\max_r E[\pi_b] = (1 + r) L \int_0^{\bar{p}(r)} p_i f(p_i) dp_i;
\]

- The effect of increasing loan rate is

\[
\frac{dE[\pi_b]}{dr} = L \int_0^{\bar{p}(r)} p_i f(p_i) dp_i + \left(1 + r\right) \frac{d\bar{p}(r)}{dr} \left(1 + r\right) L\bar{p}(r) f(\bar{p}(r));
\]

- Two diverting effects:
 - \((A) > 0\): \(r \uparrow\) increases profit from the borrowers;
 - \((B) < 0\): \(r \uparrow\) decreases the threshold of borrowers, less but riskier borrowers: lower quality for the pool of loans.
The equilibrium loan rate r^* is determined by

$$\frac{dE[\pi_b]}{dr} = 0;$$

And the deposit rate δ is determined by zero profit condition

$$E[\pi_b] = (1 + r) \int_{0}^{\overline{p}(r)} p_i f(p_i) \, dp_i = (1 + \delta) \int_{0}^{\overline{p}(r)} f(p_i) \, dp_i,$$

where

$$1 + \delta = \frac{(1 + r) \int_{0}^{\overline{p}(r)} p_i f(p_i) \, dp_i}{\int_{0}^{\overline{p}(r)} f(p_i) \, dp_i}.$$
The relationship between deposit and loan rates is

\[
\frac{d\delta}{dr} = \frac{\int_0^{\bar{p}(r)} p_i f(p_i) \, dp_i}{\int_0^{\bar{p}(r)} f(p_i) \, dp_i} - \left(1 + r\right) \frac{\int_0^{\bar{p}(r)} p_i f(p_i) \, dp_i \bar{p}'(r) f(\bar{p})}{\left[\int_0^{\bar{p}(r)} f(p_i) \, dp_i\right]^2} + \frac{(1 + r) \bar{p}'(r) \bar{p} f(\bar{p})}{\int_0^{\bar{p}(r)} f(p_i) \, dp_i} \geq 0; \tag{A}
\]

\[
\left(1 + r\right) \frac{\int_0^{\bar{p}(r)} p_i f(p_i) \, dp_i \bar{p}'(r) f(\bar{p})}{\left[\int_0^{\bar{p}(r)} f(p_i) \, dp_i\right]^2} \leq 0; \tag{B}
\]

Two diverting effects on \(\delta\):

- \((A) > 0\) (remember \(\bar{p}'(r) < 0\)): \(r \uparrow\) increases gross profit, more return to depositors;
- \((B) < 0\): \(r \uparrow\) attracts only riskier borrowers, more projects fail, less return.
Banks’ loanable funds, or loan supply, is determined by deposits they collect, \(d(\delta) \), an increasing function of \(\delta \).

- \(\delta \) may increase with \(r \) (when \(r \) is small) or decrease with \(r \) (when \(r \) is large);
- Implies banks’ loan supply is a hump-shaped curve.

\[\ell \]
Credit rationing

- The equilibrium \((r^*, \ell^*)\) implies credit rationing: excess demand for loans \(Z = \tilde{\ell} - \ell^*\).

Banks would never choose \(\hat{\ell}\) — which implies market clearing rate \(\hat{r}\) — since profit is not maximized under \(\hat{\ell}\): \(\hat{r}\) would attract too many risky projects and increase the likelihood of failure.
Conclusion

- Bank-borrower relationship is heavily plagued by *asymmetric information*: strong implication for banks’ *risk management* and *credit supply*
 - Borrowers may behave improperly, pocketing private benefit and leaving too much risk to banks;
 - Banks have to take this into account when issuing loans: to induce borrowers to behave as desired, and cut back credit supply to minimize losses from risky loans;

- *Credit rationing* happens in equilibrium, so that some borrowers’ credit demand has to be rejected
 - Lower loan rate than market clearing rate, avoiding attracting too many risky projects;
 - Credit rationing is optimal, as long as *adverse selection* problem exists.
References

(★: Recommended reading)

