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LUDWIG-

Why dynamic programming? LMU 2

= Lagrangian and optimal control are able to deal with most of the
dynamic optimization problems, even for the cases where dynamic
programming fails.

® However, dynamic programming has become widely used because
of its appealing characteristics:

O Recursive feature: flexible, and significantly reducing the complexity of
the problems;

O Convergence in the value function: quantitative analysis, especially
numerical simulation;
O Although based on profound theories, numerical computation is rather

simple as well as full-fledged. — At least one can get numerical
results.

® |n this presentation: How to USE dynamic programming methods.
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The prototype problem LMU

= Consider a general discrete-time optimization problem

+o0
max Z Bru(c)
t=0

{ct kes1 35S

s.t. kt+1 = f(Ct, kt)

= Now define a function (mostly, bounded in value)

+oo
V(k) = max Zﬂ u(ceri) = max {U(Ct)+525iu(ct+i+1)}

ct,ketr1 4 ct,ket1 i—0
— e {ule) + BV (ko)
ct,ket1

s.t. kt+1 = f(Ct, kt)
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LUDWIG-

Basic idea: recursive structure LMU)| |5

= Recursive nature of the problem — same problem for all t!
Bellman equation

V(ke) = max {u(ce) + BV (key1)}

Ctykeq1
= More jargons, similar as before: State variable k¢, control variable
ct, transition equation (law of motion), value function V (k;),

policy function ¢; = h(k;).

® Now the problem turns out to be a one-shot optimization problem,
given the transition equation!
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The first order condition LMU)| [z
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® The next step: finding the optimality conditions!

= Trivial to see: FOC of the maximization problem.

aU(Ct) 8V(kt+1)
(ke) CTka:fl{U(Ct)Jrﬁ (ket1)} Dkens +0 ke

0.

® Reason: Decision problem at period t is to allocate resources
between ¢; and k:y1. V/(k:) is an optimized value for each period
t — FOC with respect to k1 should hold.

® To get Euler equation, still need a second equation to eliminate
V() term.
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The envelope condition LMU |

® The Envelope Theorem

Theorem
Suppose that value function m(a) is defined as following:
m(a) = maxf(x(a), a).
X
Then the total derivative of m(a) with respect to a equals the partial

derivative of f(x(a), a) with respect to a, if f(x(a), a) is evaluated at
x = x(a) that maximizes f(x(a), a), i.e.

dm(a) _ 0f(x(a), a)
da Oa

x=x(a)
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The envelope condition LMU |

= Then the envelope condition of the maximization problem.

OV(k) du(c
V(k) = max {u(ce) + 8V (ken)} — ait): g(kct).

= Combine with the FOC: update and eliminate V/(-)

du(cr) | 40V (kei1)

=0.
Oket1 Oket1

® To see how it works? An example.
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Example: deterministic Brock-Mirman model MU [

= Consider the following social planner’s problem:

—+00
max E B In ¢t
t=0

{et, keSS

s.t. kt+l = ktOé — Ct.

= Bellman equation:

V(k) = mke,ax{lnc—l—BV(k’)}
s.t. c+ k' =k~
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Example: optimality conditions
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LMU| s

® Use the transition equation to replace ¢

V(k) =

In(k® — k' V(K')).
max {In(k* — K') + BV(K)}
= The first order condition and the envelope condition

~LyBvi(K)=0
V/(k) = Lokt — V/(K') = Sak ™!

= Euler equation, same as one can get from Hamiltonian:
d la—1
= = apk .
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What's new: making more senses LMU [

MONCHEN

= |f dynamic programming simply arrives at the same outcome as
Hamiltonian, then one doesn’t have to bother with it.

= However, the marginal return from dynamic programming becomes
higher if one explores deeper. Take a closer look:
O Value function? Tells you how different paths may affect your value
on the entire time horizon. Policy evaluation!
O Policy function? Tells you explicitly how you make optimal choice in
each period, given the state!

m Strategy: Determine V/(k), and optimize to get ¢; = h(k:). Not

easy...
O Analytical — not always tractable, or
O Numerical — in principle, always works.
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Mickey Mouse models: guess and verify LMU|;

® Brock-Mirman model:

V(ik) = !
(k) mkelxx{lnc—i-ﬁV(k )}
s.t. c+ k' =k°.

m Guess: V(k) = A+ Bln k. Verify with the first order condition

1 3B
kKK

1 e _
——+BVI(K) = ~0.

® Solve to get k' = 1+ Bka as well as ¢ = 1+ﬁBk°‘ Then apply
these equations back to Bellman.
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Mickey Mouse models: guess and verify LMU|;

= Compare with our conjecture V(k) = A+ Blnk

V(k) =InBB + BA— (1+ BB)In(1+ 8B) + a(1 + B) Ink.

® Solve to get the value of the parameters and the policy function

[0
B=1"ap
A=1+ In(l—aﬂ)—l—lfiﬂlnaﬂ ,
1
=17 gk = (- afk
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Value function at the end of the world LMU |

= More general approach: To find the value function in the limit.
Suppose that the world ends after some finite peroid T. Then
surely V(k741) =0 as well as c7 = k¢, and k741 =0.

® Apply these in the Bellman equation

V(kr) = InkG + BV (kr41) = In k.

® Then take one period backward, the agent has to solve

V(kr—1) = max {In(cr_1) + BV(kT)}.

cr—1,kT
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Value function before the end of the world LMU |

m Insert V(kt) and solve for V(kt_1) in terms of kr_;

V(kt_1) = aBIn(aB) — (1 + aB)In(1 + afb) + (1 + aB) In k§_;.

® |n the limit T — 400 one can show that the value function
converges to

V(ke) = CTlf:ﬁ {In e+ [ﬁ (In(l —af)+ 1 fﬂaﬂ In aﬁ)

o
+ 1_alg|nkt+1:|}.

® Then solve this static maximization problem to get the policy
function

ce = (1— aB)k?.
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Numerical simulation LMU

= How if the problem gets more complicated? Consider

V() = max{u(e) + BV(K)}

s.t. c+ k' = Ak™ — 5k.

= No open form solution! But... let the computer do the value
function iteration.

0 Discretize the state space, and determine its range;
O Start from the end of the world, and do the backward induction
0 Until the change in value function meets the convergence criterion.
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LUDWIG-

Numerical simulation: value function LMU)| |5

® Take 3 =0.6, A=20, « =0.3, § = 0.5 and run MATLAB

Value Function
T

6.5

. . . . .
0 2 4 6 8 10 12
Capital
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LUDWIG-
MAXIMILIANS-

Numerical simulation: convergence LMU

® .. and see how it converges ...

Value Function
T

Capital
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LUDWIG-

Numerical simulation: steady state LMU

= ... and find the steady state.

Policy Function
12 T

101

Capital Tomorrow
=

. . . . .
0 2 4 6 8 10 12
Capital Today
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Summary LMU| e

MONCHEN

= |f one only needs the Euler equation and qualitative reasoning,
dynamic programming is no better than Hamiltonian.

® To use dynamic programming, more issues to worry: Recursive?
Existence of equilibrium (Blackwell sufficient conditions for
contraction mapping, and fixed point theorem)? Stochastic? ...
= But rewarding if one wants to know more
O Flexibility in modelling;
0 Well developed numerical methods.
® Especially, some interesting new research

0 Dynamic contract theory, e.g. Marcet & Marimon (1998), Werning
(2008), Doepke (2008);

0 Computating dynamic equilibrium, e.g. Heer & Maussner (2005), and
dynamic equilibrium econometrics, e.g. Canova (2007);

O Stochastic models, e.g. Stachurski (2009), Dixit & Pindyck (1994).

20 of 21



For further reading... LMU

¥ Klaus Wailde.
Applied Intertemporal Optimization.
Mimeo, University of Mainz, 2010.

@ Nancy L. Stokey, Robert E. Lucas with Edward C. Prescott
Recursive Methods in Economic Dynamics.
Cambridge: Harvard University Press, 19809.
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