
An Introduction to Dynamic Programming

Jin Cao

Macroeconomics (Research, WS10/11)

November, 2010



Outline

Motivation
Why Dynamic Programming
Basic Idea

Optimality Conditions
The First Order Condition
The Envelope Condition
An Example: Brock-Mirman Model

Value Function and Policy Function
Guess and Verify
Value Function Iteration
Numerical Simulation

2 of 21



Why dynamic programming?

� Lagrangian and optimal control are able to deal with most of the
dynamic optimization problems, even for the cases where dynamic
programming fails.

� However, dynamic programming has become widely used because
of its appealing characteristics:
� Recursive feature: flexible, and significantly reducing the complexity of

the problems;
� Convergence in the value function: quantitative analysis, especially

numerical simulation;
� Although based on profound theories, numerical computation is rather

simple as well as full-fledged. — At least one can get numerical
results.

� In this presentation: How to USE dynamic programming methods.

3 of 21



The prototype problem

� Consider a general discrete-time optimization problem

max
{ct ,kt+1}+∞t=0

+∞∑
t=0

βtu(ct)

s.t. kt+1 = f (ct , kt).

� Now define a function (mostly, bounded in value)

V (kt) = max
ct ,kt+1

+∞∑
i=0

βiu(ct+i ) = max
ct ,kt+1

{
u(ct) + β

+∞∑
i=0

βiu(ct+i+1)

}
= max

ct ,kt+1

{u(ct) + βV (kt+1)}

s.t. kt+1 = f (ct , kt).

4 of 21



Basic idea: recursive structure

� Recursive nature of the problem — same problem for all t!
Bellman equation

V (kt) = max
ct ,kt+1

{u(ct) + βV (kt+1)}

� More jargons, similar as before: State variable kt , control variable
ct , transition equation (law of motion), value function V (kt),
policy function ct = h(kt).

� Now the problem turns out to be a one-shot optimization problem,
given the transition equation!

5 of 21



The first order condition

� The next step: finding the optimality conditions!

� Trivial to see: FOC of the maximization problem.

V (kt) = max
ct ,kt+1

{u(ct) + βV (kt+1)} −→ ∂u(ct)

∂kt+1
+ β

∂V (kt+1)

∂kt+1
= 0.

� Reason: Decision problem at period t is to allocate resources
between ct and kt+1. V (kt) is an optimized value for each period
t — FOC with respect to kt+1 should hold.

� To get Euler equation, still need a second equation to eliminate
V (·) term.

6 of 21



The envelope condition

� The Envelope Theorem

Theorem
Suppose that value function m(a) is defined as following:

m(a) = max
x

f (x(a), a).

Then the total derivative of m(a) with respect to a equals the partial
derivative of f (x(a), a) with respect to a, if f (x(a), a) is evaluated at
x = x(a) that maximizes f (x(a), a), i.e.

dm(a)

da
=
∂f (x(a), a)

∂a

∣∣∣∣
x=x(a)

.

7 of 21



The envelope condition

� Then the envelope condition of the maximization problem.

V (kt) = max
ct ,kt+1

{u(ct) + βV (kt+1)} −→ ∂V (kt)

∂kt
=
∂u(ct)

∂kt
.

� Combine with the FOC: update and eliminate V (·)

∂u(ct)

∂kt+1
+ β

∂V (kt+1)

∂kt+1
= 0.

� To see how it works? An example.

8 of 21



Example: deterministic Brock-Mirman model

� Consider the following social planner’s problem:

max
{ct ,kt}+∞t=0

+∞∑
t=0

βt ln ct

s.t. kt+1 = kαt − ct .

� Bellman equation:

V (k) = max
k ′

{
ln c + βV (k ′)

}
s.t. c + k ′ = kα.

9 of 21



Example: optimality conditions

� Use the transition equation to replace c

V (k) = max
k ′

{
ln(kα − k ′) + βV (k ′)

}
.

� The first order condition and the envelope condition

− 1
c + βV ′(k ′) = 0

V ′(k) = 1
cαkα−1 → V ′(k ′) = 1

c ′αk ′α−1

� Euler equation, same as one can get from Hamiltonian:
c ′

c = αβk ′α−1.

10 of 21



What’s new: making more senses

� If dynamic programming simply arrives at the same outcome as
Hamiltonian, then one doesn’t have to bother with it.

� However, the marginal return from dynamic programming becomes
higher if one explores deeper. Take a closer look:
� Value function? Tells you how different paths may affect your value

on the entire time horizon. Policy evaluation!
� Policy function? Tells you explicitly how you make optimal choice in

each period, given the state!

� Strategy: Determine V (k), and optimize to get ct = h(kt). Not
easy...
� Analytical — not always tractable, or
� Numerical — in principle, always works.

11 of 21



Mickey Mouse models: guess and verify

� Brock-Mirman model:

V (k) = max
k ′

{
ln c + βV (k ′)

}
s.t. c + k ′ = kα.

� Guess: V (k) = A + B ln k . Verify with the first order condition

−1

c
+ βV ′(k ′) = − 1

kα − k ′
+
βB

k ′
= 0.

� Solve to get k ′ = βB
1+βB kα, as well as c = 1

1+βB kα. Then apply
these equations back to Bellman.

12 of 21



Mickey Mouse models: guess and verify

� Compare with our conjecture V (k) = A + B ln k

V (k) = lnβB + βA− (1 + βB) ln(1 + βB) + α(1 + βB) ln k .

� Solve to get the value of the parameters and the policy function

B =
α

1− αβ
,

A =
1

1− β

[
ln(1− αβ) +

αβ

1− αβ
lnαβ

]
,

ct =
1

1 + βB
kαt = (1− αβ)kαt .

13 of 21



Value function at the end of the world

� More general approach: To find the value function in the limit.
Suppose that the world ends after some finite peroid T . Then
surely V (kT+1) = 0 as well as cT = kαT , and kT+1 = 0.

� Apply these in the Bellman equation

V (kT ) = ln kαT + βV (kT+1) = ln kαT .

� Then take one period backward, the agent has to solve

V (kT−1) = max
cT−1,kT

{ln(cT−1) + βV (kT )} .

14 of 21



Value function before the end of the world

� Insert V (kT ) and solve for V (kT−1) in terms of kT−1

V (kT−1) = αβ ln(αβ)− (1 + αβ) ln(1 + αβ) + (1 + αβ) ln kαT−1.

� In the limit T → +∞ one can show that the value function
converges to

V (kt) = max
ct ,kt+1

{
ln ct + β

[
1

1− β

(
ln(1− αβ) +

αβ

1− αβ
lnαβ

)
+

α

1− αβ
ln kt+1

]}
.

� Then solve this static maximization problem to get the policy
function

ct = (1− αβ)kαt .

15 of 21



Numerical simulation

� How if the problem gets more complicated? Consider

V (k) = max
c,k ′

{
u(c) + βV (k ′)

}
s.t. c + k ′ = Akα − δk .

� No open form solution! But... let the computer do the value
function iteration.
� Discretize the state space, and determine its range;
� Start from the end of the world, and do the backward induction
� Until the change in value function meets the convergence criterion.

16 of 21



Numerical simulation: value function

� Take β = 0.6, A = 20, α = 0.3, δ = 0.5 and run MATLAB

0 2 4 6 8 10 12
6

6.5

7

7.5

8

8.5

9

Capital

U
til

ity
Value Function

17 of 21



Numerical simulation: convergence

� ... and see how it converges ...

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

Capital

U
til

ity

Value Function

18 of 21



Numerical simulation: steady state

� ... and find the steady state.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Capital Today

C
ap

ita
l T

om
or

ro
w

Policy Function

19 of 21



Summary

� If one only needs the Euler equation and qualitative reasoning,
dynamic programming is no better than Hamiltonian.

� To use dynamic programming, more issues to worry: Recursive?
Existence of equilibrium (Blackwell sufficient conditions for
contraction mapping, and fixed point theorem)? Stochastic? ...

� But rewarding if one wants to know more
� Flexibility in modelling;
� Well developed numerical methods.

� Especially, some interesting new research
� Dynamic contract theory, e.g. Marcet & Marimon (1998), Werning

(2008), Doepke (2008);
� Computating dynamic equilibrium, e.g. Heer & Maussner (2005), and

dynamic equilibrium econometrics, e.g. Canova (2007);
� Stochastic models, e.g. Stachurski (2009), Dixit & Pindyck (1994).

20 of 21



For further reading...

Klaus Wälde.
Applied Intertemporal Optimization.
Mimeo, University of Mainz, 2010.

Nancy L. Stokey, Robert E. Lucas with Edward C. Prescott
Recursive Methods in Economic Dynamics.
Cambridge: Harvard University Press, 1989.

21 of 21


	Motivation
	Why Dynamic Programming
	Basic Idea

	Optimality Conditions
	The First Order Condition
	The Envelope Condition
	An Example: Brock-Mirman Model

	Value Function and Policy Function
	Guess and Verify
	Value Function Iteration
	Numerical Simulation

	Summary
	Appendix
	Appendix
	



