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Why dynamic programming?

� Lagrangian and optimal control are able to deal with most of the
dynamic optimization problems, even for the cases where dynamic
programming fails.

� However, dynamic programming has become widely used because
of its appealing characteristics:
� Recursive feature: flexible, and significantly reducing the complexity of

the problems;
� Convergence in the value function: quantitative analysis, especially

numerical simulation;
� Although based on profound theories, numerical computation is rather

simple as well as full-fledged. — At least one can get numerical
results.

� In this presentation: How to USE dynamic programming methods.
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The prototype problem

� Consider a general discrete-time optimization problem

max
{ct ,kt+1}+∞t=0

+∞∑
t=0

βtu(ct)

s.t. kt+1 = f (ct , kt).

� Now define a function (mostly, bounded in value)

V (kt) = max
ct ,kt+1

+∞∑
i=0

βiu(ct+i ) = max
ct ,kt+1

{
u(ct) + β

+∞∑
i=0

βiu(ct+i+1)

}
= max

ct ,kt+1

{u(ct) + βV (kt+1)}

s.t. kt+1 = f (ct , kt).
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Basic idea: recursive structure

� Recursive nature of the problem — same problem for all t!
Bellman equation

V (kt) = max
ct ,kt+1

{u(ct) + βV (kt+1)}

� More jargons, similar as before: State variable kt , control variable
ct , transition equation (law of motion), value function V (kt),
policy function ct = h(kt).

� Now the problem turns out to be a one-shot optimization problem,
given the transition equation!
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The first order condition

� The next step: finding the optimality conditions!

� Trivial to see: FOC of the maximization problem.

V (kt) = max
ct ,kt+1

{u(ct) + βV (kt+1)} −→ ∂u(ct)

∂kt+1
+ β

∂V (kt+1)

∂kt+1
= 0.

� Reason: Decision problem at period t is to allocate resources
between ct and kt+1. V (kt) is an optimized value for each period
t — FOC with respect to kt+1 should hold.

� To get Euler equation, still need a second equation to eliminate
V (·) term.
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The envelope condition

� The Envelope Theorem

Theorem
Suppose that value function m(a) is defined as following:

m(a) = max
x

f (x(a), a).

Then the total derivative of m(a) with respect to a equals the partial
derivative of f (x(a), a) with respect to a, if f (x(a), a) is evaluated at
x = x(a) that maximizes f (x(a), a), i.e.

dm(a)

da
=
∂f (x(a), a)

∂a

∣∣∣∣
x=x(a)

.
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The envelope condition

� Then the envelope condition of the maximization problem.

V (kt) = max
ct ,kt+1

{u(ct) + βV (kt+1)} −→ ∂V (kt)

∂kt
=
∂u(ct)

∂kt
.

� Combine with the FOC: update and eliminate V (·)

∂u(ct)

∂kt+1
+ β

∂V (kt+1)

∂kt+1
= 0.

� To see how it works? An example.
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Example: deterministic Brock-Mirman model

� Consider the following social planner’s problem:

max
{ct ,kt}+∞t=0

+∞∑
t=0

βt ln ct

s.t. kt+1 = kαt − ct .

� Bellman equation:

V (k) = max
k ′

{
ln c + βV (k ′)

}
s.t. c + k ′ = kα.
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Example: optimality conditions

� Use the transition equation to replace c

V (k) = max
k ′

{
ln(kα − k ′) + βV (k ′)

}
.

� The first order condition and the envelope condition

− 1
c + βV ′(k ′) = 0

V ′(k) = 1
cαkα−1 → V ′(k ′) = 1

c ′αk ′α−1

� Euler equation, same as one can get from Hamiltonian:
c ′

c = αβk ′α−1.
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What’s new: making more senses

� If dynamic programming simply arrives at the same outcome as
Hamiltonian, then one doesn’t have to bother with it.

� However, the marginal return from dynamic programming becomes
higher if one explores deeper. Take a closer look:
� Value function? Tells you how different paths may affect your value

on the entire time horizon. Policy evaluation!
� Policy function? Tells you explicitly how you make optimal choice in

each period, given the state!

� Strategy: Determine V (k), and optimize to get ct = h(kt). Not
easy...
� Analytical — not always tractable, or
� Numerical — in principle, always works.
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Mickey Mouse models: guess and verify

� Brock-Mirman model:

V (k) = max
k ′

{
ln c + βV (k ′)

}
s.t. c + k ′ = kα.

� Guess: V (k) = A + B ln k . Verify with the first order condition

−1

c
+ βV ′(k ′) = − 1

kα − k ′
+
βB

k ′
= 0.

� Solve to get k ′ = βB
1+βB kα, as well as c = 1

1+βB kα. Then apply
these equations back to Bellman.
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Mickey Mouse models: guess and verify

� Compare with our conjecture V (k) = A + B ln k

V (k) = lnβB + βA− (1 + βB) ln(1 + βB) + α(1 + βB) ln k .

� Solve to get the value of the parameters and the policy function

B =
α

1− αβ
,

A =
1

1− β

[
ln(1− αβ) +

αβ

1− αβ
lnαβ

]
,

ct =
1

1 + βB
kαt = (1− αβ)kαt .
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Value function at the end of the world

� More general approach: To find the value function in the limit.
Suppose that the world ends after some finite peroid T . Then
surely V (kT+1) = 0 as well as cT = kαT , and kT+1 = 0.

� Apply these in the Bellman equation

V (kT ) = ln kαT + βV (kT+1) = ln kαT .

� Then take one period backward, the agent has to solve

V (kT−1) = max
cT−1,kT

{ln(cT−1) + βV (kT )} .
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Value function before the end of the world

� Insert V (kT ) and solve for V (kT−1) in terms of kT−1

V (kT−1) = αβ ln(αβ)− (1 + αβ) ln(1 + αβ) + (1 + αβ) ln kαT−1.

� In the limit T → +∞ one can show that the value function
converges to

V (kt) = max
ct ,kt+1

{
ln ct + β

[
1

1− β

(
ln(1− αβ) +

αβ

1− αβ
lnαβ

)
+

α

1− αβ
ln kt+1

]}
.

� Then solve this static maximization problem to get the policy
function

ct = (1− αβ)kαt .
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Numerical simulation

� How if the problem gets more complicated? Consider

V (k) = max
c,k ′

{
u(c) + βV (k ′)

}
s.t. c + k ′ = Akα − δk .

� No open form solution! But... let the computer do the value
function iteration.
� Discretize the state space, and determine its range;
� Start from the end of the world, and do the backward induction
� Until the change in value function meets the convergence criterion.
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Numerical simulation: value function

� Take β = 0.6, A = 20, α = 0.3, δ = 0.5 and run MATLAB
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Numerical simulation: convergence

� ... and see how it converges ...
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Numerical simulation: steady state

� ... and find the steady state.
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Summary

� If one only needs the Euler equation and qualitative reasoning,
dynamic programming is no better than Hamiltonian.

� To use dynamic programming, more issues to worry: Recursive?
Existence of equilibrium (Blackwell sufficient conditions for
contraction mapping, and fixed point theorem)? Stochastic? ...

� But rewarding if one wants to know more
� Flexibility in modelling;
� Well developed numerical methods.

� Especially, some interesting new research
� Dynamic contract theory, e.g. Marcet & Marimon (1998), Werning

(2008), Doepke (2008);
� Computating dynamic equilibrium, e.g. Heer & Maussner (2005), and

dynamic equilibrium econometrics, e.g. Canova (2007);
� Stochastic models, e.g. Stachurski (2009), Dixit & Pindyck (1994).
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For further reading...

Klaus Wälde.
Applied Intertemporal Optimization.
Mimeo, University of Mainz, 2010.

Nancy L. Stokey, Robert E. Lucas with Edward C. Prescott
Recursive Methods in Economic Dynamics.
Cambridge: Harvard University Press, 1989.
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