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Evil is the Root of All

Money

“What this country needs,”he (Mr. President Hoover) told Christopher Morley, “is

a great poem.”To Rudy Vallee he said in the spring of 1932, “If you can sing a song

that would make people forget the Depression, I’ll give you a medal.”Vallee didn’t

get the medal. Instead he sang:

They used to tell me I was building a dream

And so I followed the mob.

When there was earth to plough or guns to bear

I was always there right on the job.

Once I built a railroad, made it run

Made it race against time.

Once I built a railroad, now it’s done.

Brother, can you spare a dime?

—William Manchester (1973), The Glory and the Dream
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1 Introduction

Finally we come to the second pillar of this course — money. As you may have already heard
thousands of times from many macro textbooks, money is just anything generally acceptable
as a mean of exchange, valued, at least in part, because of its role in the exchange process. You
may have further heard of different types of monies — Inside money is a liability of the private
economy, i.e., of private institutions. Between the liabilities there are demand deposits, i.e.,
checking accounts, and saving accounts. Their value is backed by the value of assets: loans,
securities and reserves, which are a fraction of liabilities. It is considered as the “output”of
the banking sector and of the financial sector. Outside money is a liability of the government.
Its key feature is that it is unbacked. It has value only as a mean of exchange and it has only
an exchange value. Its value is the amount of goods and purchases one can get in exchange
— the inverse of the price level. The purchasing power of outside money is 1

Pt
, in which Pt is

the price level at time t. Pt+1−Pt
Pt

is the rate of inflation — although such dichotomy of money
is extremely important in linking macro & finance and its surrounding literature is booming ,
in this course we will mostly regard money as outside, i.e. some intrinsically worthless paper
printed by the government without being backed by the value of assets.

But wait. The models we learned before today, mainly the neoclassical growth models, are
models of non-monetary economy. There is no transactional role for money in these models,
and what makes it worse is that even we introduce money (essentially paper) in these models,
it simply has a zero nominal rate of return and is therefore dominated in rate of return by other
interest bearing assets — i.e. nobody would keep it at all! Therefore the key that bridges what
we have learnd and monetary economics is to specify the role for money so that people are
willing to hold positive quantities of money, i.e. money must be justified to own a positive
value. And only after this is justified can we say anything about monetary policy.

S 2, trying to award money its value by adding it into the utility functions following
Sidrauski (1967), is essentially a reader for Walsh (2010) C 2. The chapter by Walsh is
an excellent, full-fledged must-read of money-in-the-utility model, however, readers may feel
hard to follow. One reason is the specification of the optimization problem is a hidden myth
there, so people may wonder how one can suddenly arrive at those fabulous long equations.
The other reason is that the solution procedure is done by dynamic programming method —
although this is definitely the main-stream (and here more than enough) approach, readers
may easily get stuck in the quagmire of the first order as well as envelope conditions. So
in the beginning of S 2 I take the setups from Walsh, but then quickly deviate from
the approach of him by uncovering the hidden tricks in better characterizing the problem
and taking the solution menu of optimal control. Hope this could make the readers a more
pleasant voyage through the jungle of Walsh (2010).

S 3 briefly presents another model by imposing an additional money balance constraint,
leading to very similar results as those in the former one. However, we are not able to cover
more due to the limit of time, and readers will find some interesting readings listed in the end
of this chapter.
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2 Money in the Utility

Money in the utility models assume that money yields direct utility by incorporating money
balances directly into the utility functions of the representative agent (think why such seem-
ingly naı̈ve specification is in fact plausible and useful), i.e. in comparison to the models we
learned before, a representative agent gains her utility from both real consumption and real
money balance,

Ut = u(ct,mt)

in which mt is the real money balance equal to the nominal amount of money divided by
the price level in each period t. To make money offer some non-pecuniary benefit, assume
that u(·) is strictly concave in both ct and mt. And in order to make it a general equilibrium
model, we introduce bonds bearing a nominal interest rate as well as physical capital for the
production in the economy. Then in a dynamic context, the agent’s problem is to

max
{kt ,ct ,bt ,mt}

+∞
t=0

U =

+∞∑
t=0

βtu(ct,mt)

in which bt is the real bonds balance equal to the nominal amount of bonds divided by the
price level in each period t. And as a convention, people use the small letters for per capita
variables.

2.1 Specification of the Optimization Problem

Similar as what we did in the Ramsey problem, now we define the law of motion to complete
the specification of the optimization problem. To make it simpler we can start from defining
the social resource constraint of a benevolent central planner 1

Yt + τtNt + (1 − δ)Kt−1 +
(1 + it−1)Bt−1

Pt
+

Mt−1

Pt
= Ct + Kt +

Mt

Pt
+

Bt

Pt
(1)

in which Yt is the aggregate output, Kt−1 is the aggregate stock of capital at the beginning of
period t, and τtNt is the aggregate real value of the lump-sum tax income (per capita tax times
population).

The timing of the model is a little bit tricky and plays an important role in the specification
of (1) which drives the final results. Though seemingly complicated, the intuition behind

1 As you learned in the Ramsey-Cass-Koopmans model, this is equivalent to the approach of finding
the resource constraint of a decentralized economy. You may try to start from there and see the different
reasoning — as in C 2.2, Walsh (2010).
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equation (1) is pretty clear: In each period the task of the central planner is divided into two
steps

• She collets all the resources available in the beginning of the period as the left hand side
of (1) shows — Implement the production using the past period capital (note it is slightly
different from the standard Ramsey-Cass-Koopmans model, and you will see this makes
life easier in finding the solution) via neoclassical technology (assuming full employment,
i.e. the labor input Lt is equal to the population Nt. To make it simple, assume that the
population grows at a constant rate n, i.e. Nt = N0(1 + n)t)

Yt = F(Kt−1,Nt),

tax the households, collect the remaining capital after depreciation, and determine the real
balance (because the production, tax and capital are expressed in real terms!) of bonds as
well as money in the economy.

• Then she decides how to allocate these resources as the right hand side of (1) shows —
distribute the consumption goods to the households, prepare the capital input for the next
period, and adjust the real balance of bonds as well as money for the current period.

Now the same trick as before — find the law of motion in per capita terms. Manipulate (1)

F (Kt−1,Nt−1(1 + n)) + τtNt + (1 − δ)kt−1
Nt

1 + n
+

(1 + it−1)Bt−1Nt + Mt−1Nt

Nt−1Pt−1(1 + n)(1 + πt)

= NtF
(

Kt−1

Nt−1(1 + n)
, 1

)
+ τtNt + (1 − δ)kt−1

Nt

1 + n
+

[(1 + it−1)Bt−1 + Mt−1] Nt

Nt−1Pt−1(1 + n)(1 + πt)

= Ntct + Ntkt +
MtNt

NtPt
+

BtNt

NtPt
,

and define bt = Bt
NtPt

as per capita bond balance as well as mt = Mt
NtPt

as per capita money
balance, by dividing both sides with Nt the equation above can be rewritten as

f
(

kt−1

1 + n

)
+ τt +

(1 − δ)kt−1

1 + n
+

(1 + it−1)bt−1 + mt−1

(1 + n)(1 + πt)
= ct + kt + mt + bt. (2)

Then the representative agent’s problem can be expressed as

max
{kt ,ct ,bt ,mt}

+∞
t=0

U =

+∞∑
t=0

βtu(ct,mt),

s.t. f
(

kt−1

1 + n

)
+ τt +

(1 − δ)kt−1

1 + n
+

(1 + it−1)bt−1 + mt−1

(1 + n)(1 + πt)
= ct + kt + mt + bt.
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2.2 Getting the First Order Conditions

What’s next? No matter you want to go on with optimal control method (as I will do) or dy-
namic programming (as Carl Walsh does), you have to distinguish the state variables from the
control variables. But this seems not that clear at the first glance here, because it’s difficult to
say which variable(s) fully characterize(s) the state the decision maker faces in the beginning
of each period and hence hard to find the transition function(s). Now you can understand why
we set up the timing of the events in such a way which is described as a two-step setup in
the beginning of this section: By assuming that the social planner collects all the available
resources in the beginning of each period and then allocates what she gets, we actually al-
ready defined a state variable — the left hand side of (2)! This is exactly what the allocation
decision is based on! We define it as the per capita wealth, wt, in each period t, such as

wt = f
(

kt−1

1 + n

)
+ τt +

(1 − δ)kt−1

1 + n
+

(1 + it−1)bt−1 + mt−1

(1 + n)(1 + πt)
= ct + kt + mt + bt. (3)

Then what’s the control variable? From the representative agent’s problem we see that she
has to find the optimal path for {kt, ct, bt,mt}

+∞
t=0 . But the sum of these four variables is just wt.

Therefore we can define any three out of four as control variables — say, ct ,bt and mt. Now
rewrite the law of motion, or the transition function, in terms of the state and control variables
by manipulating (3)

wt+1 − wt = f
(

kt

1 + n

)
+ τt+1 +

(1 − δ)kt

1 + n
+

(1 + it)bt + mt

(1 + n)(1 + πt+1)
− wt

= f
(
wt − ct − mt − bt

1 + n

)
+ τt+1 +

(1 − δ)(wt − ct − mt − bt)
1 + n

+
(1 + it)bt + mt

(1 + n)(1 + πt+1)
− wt,

with which we can set up the present value Hamiltonian

Ht = βtu(ct,mt) + λt

[
f
(
wt − ct − mt − bt

1 + n

)
+ τt+1 +

(1 − δ)(wt − ct − mt − bt)
1 + n

+
(1 + it)bt + mt

(1 + n)(1 + πt+1)
− wt

]
.

The first order conditions are

∂Ht

∂ct
= βt ∂u(ct,mt)

∂ct
+ λt

[
−

1
1 + n

f ′
(
wt − ct − mt − bt

1 + n

)
−

1 − δ
1 + n

]
= 0, (4)
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∂Ht

∂mt
= βt ∂u(ct,mt)

∂mt
+ λt

[
−

1
1 + n

f ′
(
wt − ct − mt − bt

1 + n

)
−

1 − δ
1 + n

+
1

(1 + n)(1 + πt+1)

]
= 0,(5)

∂Ht

∂bt
= λt

[
−

1
1 + n

f ′
(
wt − ct − mt − bt

1 + n

)
−

1 − δ
1 + n

+
1 + it

(1 + n)(1 + πt+1)

]
= 0, (6)

∂Ht

∂wt
= λt

[
1

1 + n
f ′

(
wt − ct − mt − bt

1 + n

)
+

1 − δ
1 + n

− 1
]

= −(λt − λt−1), (7)

as well as the transversality condition

lim
T→+∞

λT wT = 0. (8)

By equation (6) one can see that

−
1

1 + n
f ′

(
wt − ct − mt − bt

1 + n

)
−

1 − δ
1 + n

+
1 + it

(1 + n)(1 + πt+1)
= 0. (9)

Use this fact to rewrite the first order conditions

∂Ht

∂ct
= βt ∂u(ct,mt)

∂ct
+ λt

[
−

1 + it

(1 + n)(1 + πt+1)

]
= 0, (10)

∂Ht

∂mt
= βt ∂u(ct,mt)

∂mt
+ λt

[
−

it

(1 + n)(1 + πt+1)

]
= 0, (11)

∂Ht

∂wt
= λt

[
1 + it

(1 + n)(1 + πt+1)
− 1

]
= −(λt − λt−1). (12)

Now we are approaching the final results with the reshaped first order conditions (9) – (12) .
First, continue with (9)

1 + it

(1 + n)(1 + πt+1)
=

1
1 + n

[
f ′

(
wt − ct − mt − bt

1 + n

)
+ 1 − δ

]
,

1 + it

1 + πt+1
= 1 + f ′t − δ

in which f ′t denotes the productivity at period t. Then quickly we realize that f ′t − δ is just the
real interest rate for period t, rt, in general equilibrium. Therefore

1 + it = (1 + rt)(1 + πt+1). (13)

Take logarithm on both sides and notice that the rates are small numbers, we get

it = rt + πt+1. (14)
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Second, divide (11) by (10) one can see that

∂u(ct ,mt)
∂mt

∂u(ct ,mt)
∂ct

=
it

1 + it
. (15)

Third, notice that equation (12) can be simplified as

λt

[
1 + it

(1 + n)(1 + πt+1)

]
= λt−1, (16)

and by Equation (10) the left hand side of it is just

λt

[
1 + it

(1 + n)(1 + πt+1)

]
= βt∂u(ct,mt)

∂ct
. (17)

Combine these two equations (16) and (17) we get

βt ∂u(ct,mt)
∂ct

= λt−1,

which is equivalent to

βt+1∂u(ct+1,mt+1)
∂ct+1

= λt (18)

by one period update. Then we rewrite equation (10) as

βt ∂u(ct,mt)
∂ct

= λt

[
1 + it

(1 + n)(1 + πt+1)

]
= λt

1
(1 + n)(1 + πt+1)

+ λt
it

(1 + n)(1 + πt+1)

= λt
1

(1 + n)(1 + πt+1)
+ βt∂u(ct,mt)

∂mt

in which the last step is simply taken from equation (11). Using (18) to eliminate λt we get

βt ∂u(ct,mt)
∂ct

= βt+1∂u(ct+1,mt+1)
∂ct+1

1
(1 + n)(1 + πt+1)

+ βt ∂u(ct,mt)
∂mt

,

and simplify to obtain
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∂u(ct,mt)
∂ct

=
β∂u(ct+1,mt+1)

∂ct+1

(1 + n)(1 + πt+1)
+
∂u(ct,mt)
∂mt

. (19)

As a last step we can also directly insert (18) into (10)

βt ∂u(ct,mt)
∂ct

= βt+1∂u(ct+1,mt+1)
∂ct+1

[
1 + it

(1 + n)(1 + πt+1)

]
,

and simplify to obtain

∂u(ct ,mt)
∂ct

∂u(ct+1,mt+1)
∂ct+1

= β
1 + it

(1 + n)(1 + πt+1)
. (20)

Insert (13) into (20) and we get

∂u(ct ,mt)
∂ct

∂u(ct+1,mt+1)
∂ct+1

= β
1 + rt

1 + n
. (21)

2.3 Interpreting the Results

We pick up the central results from the lengthy derivation above and list them as following:

1 + it = (1 + rt)(1 + πt+1), (22)
∂u(ct ,mt)
∂mt

∂u(ct ,mt)
∂ct

=
it

1 + it
, (23)

∂u(ct,mt)
∂ct

=
β∂u(ct+1,mt+1)

∂ct+1

(1 + n)(1 + πt+1)
+
∂u(ct,mt)
∂mt

, (24)

∂u(ct ,mt)
∂ct

∂u(ct+1,mt+1)
∂ct+1

= β
1 + rt

1 + n
. (25)

These equations have straightforward interpretations. Since resources are divided between
consumption, capital, bonds, and money balances, each of them must yield the same marginal
benefit for the agent at the optima.

2.3.1 The Fisher Parity

Equation (22) links the nominal return on bonds, inflation, and the real return on capital,
called the Fisher parity after Irving Fisher. It shows the gross nominal rate of interest equals
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to the gross real return on capital times one plus the expected rate of inflation.

2.3.2 Money Demand Function

Equation (23) is the money demand function, showing that the marginal utility of real money
balances normalized by the marginal utility from consumption (or, to put it technically, the
marginal rate of substitution between money and consumption) is equal to the relative price of
real money balances in terms of the consumption goods, i.e. the opportunity cost of holding
money.

To make it clearer, we further explore equation (23) by assuming that the utility function
u(ct,mt) is additively separable, i.e.

∂2u(ct,mt)
∂ct∂mt

= 0,

to separate the effects of real money balance and consumption on the utility function (and we
keep this assumption for the rest of this section). Now consider two situations:

• Suppose that there is an increase of it, then the right hand side of equation (23) goes up
and ∂u(ct ,mt)

∂mt
has to go up (holding ct constant). Given that the utility function is strictly

concave in mt, the real money balance mt must go down — because of the opportunity cost
of holding money goes up (remember that money pays no interest rate). Therefore there is
an inverse relationship between mt and it;

• On the other hand suppose that it is kept constant and there is an increase in ct, then ∂u(ct ,mt)
∂ct

goes down. To maintain the equality ∂u(ct ,mt)
∂mt

has to go down as well, meaning that mt goes
up — the real money balance moves in the same direction as consumption ct.

In summary the real money demand depends on the level of consumption as well as the
nominal interest rate, which can be captured in the following equation that is often seen in
the intermediate macro textbooks

Mt

Pt
= L(it, ct) with

∂L
∂it

< 0 and
∂L
∂ct

> 0.

And this is the basis of the well-known LM curve 2 .

2.3.3 Marginal Benefit of Money Holding

As argued in the beginning of S 2.3, in the margin each additional unit of consumption,
capital, bonds, and money holdings must yield the same marginal benefit for the agent at the

2 See further discussion in Romer (2006), C 5.1 TMM.
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optima, otherwise it cannot be an equilibrium solution. Equation (24) exactly captures such
balance between money holding and consumption. In the margin adding one unit money
holding has two kinds of benefits:

• The additional money directly generates some additional utility today, i.e. ∂u(ct ,mt)
∂mt

;
• Indirectly, the additional money today will be included in the initial wealth of tomorrow

and generates some additional utility in the future. How can we compute such future ben-
efit? Again, in the margin each additional unit of consumption, capital, bonds, and money
holdings must yield the same marginal benefit for the agent at the optima and this holds for
each period. So we can easily compute the future benefit by simply allocate this additional
unit of period t + 1 initial wealth for ct+1. In the computation what we have to take care of
are
· One additional unit of per capita real money holding today is not equal to an additional

unit of per capita initial wealth tomorrow, instead, it should be discounted by the inflation
1 + πt+1 and diluted by the population growth 1 + n;
· The marginal utility tomorrow should be discounted by the factor β.

The sum of these two kinds of benefits is expressed in the right hand side of equation (24),
which should be equal to the marginal utility gained from consumption — if instead this
additional unit of money holding is consumed today.

2.3.4 Real Interest Rate Determination

Equation (25) pins down the real interest rate in optima. Rewrite this equation as

1 + rt = (1 + n)
1
β

∂u(ct ,mt)
∂ct

∂u(ct+1,mt+1)
∂ct+1

= (1 + n)(1 + ρ)
∂u(ct ,mt)
∂ct

∂u(ct+1,mt+1)
∂ct+1

,

showing that along the optimal path the gross real interest rate in each period must offset
the pressures from the population growth, the discounting in the agent’s preference and the
growth in marginal utility with respect to the consumption.

2.4 Stationary Equilibrium Analysis

Now as a dynamic system, let’s see what is going on in the steady state, in which both con-
sumption and real money balances are constant, c∗ and m∗ (to make it simpler we assume that
n = 0 from now on). Furthermore the bonds market equilibrium must be that

bt = b∗ = 0 (26)
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— everybody should be indifferent between borrowing and lending 3 . Then equations (22) –
(25) can be rewritten as

1 + it = (1 + rt)(1 + πt+1), (27)
∂u(c∗,m∗)
∂m∗

∂u(c∗,m∗)
∂c∗

=
it

1 + it
, (28)

1 =
1 + rt

1 + ρ
, (29)

plus the reshaped law of motion

f (k∗) + τ∗ + (1 − δ)k∗ +
m∗

1 + π∗
= c∗ + k∗ + m∗, (30)

these four equations give a full characterization of the steady state. What’s more, equation
(29) implies that in the steady state rt is constant and equal to ρ; then (28) implies that it is
also constant; so as πt+1 from (27). From now on we can simply write i∗, r∗ and π∗, dropping
off the time notations. Now let’s see what these equations mean.

2.4.1 The Neutrality of Money

That the real money balance m∗ is constant in the steady state implies that Mt
Pt

should be
constant. Also that the inflation rate π∗ is constant means that Pt+1

Pt
= 1 + π∗ is constant. From

these two facts, we see that in the steady state

1 + π∗ =
Pt+1

Pt
=

Mt+1

Mt
= 1 + µ,

in which µ is the growth rate of money. Then equation (29) can be rewritten as

1 + ρ=
1 + i∗

1 + µ
, (31)

3 Please note that the definition of a dynamic system’s steady state only says that all the time deriva-
tives are equal to 0 — in this case, it only means that the law of motion is time invariant, i.e.
wt = w∗ = ct + kt + mt + bt, and ∂u(ct ,mt)

∂ct
= constant (which implies that ct = c∗ because the util-

ity function is additively separable) from (25), which is NOT equivalent to that each of the other
variables, kt, mt and bt, is constant!
However, it’s not difficult to show that wt, ct, kt, mt and bt are in fact all constant in the steady state.
From (25) one can see that rt is constant in the steady state, implying that kt is also constant (note that rt

is simply the marginal productivity of capital less the depreciation rate). Since wt = w∗ = ct+kt+mt+bt

and bt = b∗ = 0 in the steady state, it must be that mt = m∗.
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1 + i∗ =
1 + µ

β
. (32)

Equation (32) says that the steady state money growth rate and the agent’s discount rate
determine the nominal interest rate. This, further, through (28) pins down m∗.

What we see from these arguments is, the steady state is featured by the constant real money
balance as well as the constant other real variables. This means that the changes in the nom-
inal quantity of money are matched by proportional changes in the price levels, leaving the
real money balance m∗ constant and the other real variables unaffected. Such feature is called
the neutrality of money.

We can go back into the equations to see why. Equation (28) is the key — Suppose that the
nominal quantity of money Mt increases and Pt doesn’t respond, then mt increases, making
the marginal utility of holding money ∂u(ct ,mt)

∂mt
decreases. Therefore the agent would simply

consume more to lower ∂u(ct ,mt)
∂ct

— the pressure from the consumption finally pushes Pt to go
up.

2.4.2 The Superneutrality of Money

We can find some more interesting feature if we continue to explore. Note that the only
channel for the central planner to redistribute the tax income is money printing, i.e. the gov-
ernment’s tax revenue is transferred to the representative agent via increasing her real money
balance. Therefore in the steady state

τ∗ = m∗ −
m∗

1 + π∗
=

π∗m∗

1 + π∗
.

Insert this into the law of motion (30), we see that

f (k∗) − δk∗ = c∗. (33)

Also we know that as a result of the optimal growth path

f ′ (k∗) − δ = r∗. (34)

Then equations (26), (28), (33) and (34) determine real values of all the variables in the
steady state. A closer look suggests that the steady state here also exhibits a feature of the
superneutrality of money — none of these variables is dependent on the rate of inflation π∗,
or the growth rate of nominal money!
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2.5 Extensions

The results and features of this model inspired infinite extensions and ignited numerous con-
troversies. More discussions in C 2.2 and 2.3, Walsh (2010). To be discussed in the
class:

• The existence of equilibrium;
• Welfare maximization and optimal monetary policy;
• Extensions of the model.

3 Cash in Advance

Although it sounds pretty reasonable to include money in the utility function that money
works via some mysterious mechanism which increases one’s well-being, often people crit-
icize such models in which money matters simply because it is assumed to be. Therefore
people would like to show the value of money in situations where money is used. One way of
doing this is to see how money facilitates transactions, assuming the transaction technology
in the economy depends on money as a transaction medium, assuming that a certain amount
of money has to be held in order to purchase the consumption goods. This type of models are
generally called cash-in-advance models.

3.1 Specification of the Optimization Problem

The representative agent’s objective is to choose a path for consumption and asset holdings
to maximize

+∞∑
t=0

βtu(ct),

in which the agent’s utility only comes from her consumption goods.

The timing of the model is featured by the following three-step stucture for each period t:

• In the beginning of the period the agent holds a certain amount of nominal money balance
Mt−1, nominal bonds balance Bt−1 (with an additional interest payment at the interest rate
it−1) and capital stock kt−1 from the last period and receives a lump-sum nominal transfer
TRt from the government. Then the goods market opens, and the agent is only able to buy
the goods for consumption with her holdings of money and transfer at the period’s price
level Pt, i.e. the agent’s cash-in-advance constraint is
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Ptct ≤Mt−1 + TRt,

ct ≤
Mt−1

Pt−1

Pt−1

Pt
+

TRt

Pt

=
mt−1

1 + πt
+ τt,

in which the second step is just to express everything in real terms, and πt is the inflation
rate of period t. The agent consumes;

• Next the production is implemented via the neoclassical technology with kt−1 as input, and
the capital depreciates at the rate δ;

• In the end the agent has to decide how much money, bonds and capital are to be allocated
as the initial wealth of the next period.

One may find the settings here depart from those in the lectures in two ways:

• To make it simple, we don’t distinguish between cash and credit goods here. The intro-
duction of cash goods is useful to drive the wedge between the marginal utilities of the
two types of goods, making consumers respond to the nominal interest rate as an oppor-
tunity cost of holding cash goods and generating the substitution between these two types
of goods. However, our simplified version here is sufficient to obtain the results we are
interested in;

• Here in each period the goods market opens first such that the consumers purchase con-
sumption goods via the money holdings accummulated from the last period, in contrast to
the model in the lectures where capital market opens first such that the consumers purchase
consumption goods via the money holdings left from the capital transaction concerning Kt.
However, in an economy without uncertainty, these two types of timing lead to the same
results.

The overall budget constraint for the period can be thus expressed as

Pt
[
f (kt−1) + (1 − δ)kt−1

]
+ Mt−1 + TRt + (1 + it−1)Bt−1 ≥ Ptct + Ptkt + Mt + Bt,

f (kt−1) + (1 − δ)kt−1 +
mt−1

1 + πt
+ τt +

1 + it−1

1 + πt
bt−1 ≥ ct + kt + mt + bt.

Again we express everything in real terms. The left hand side of the inequality is what she
gains in the period, and the right hand side is what she has to spend.

Now the representative agent’s problem can be characterized as

max
{ct ,kt ,mt ,bt}

+∞
t=0

+∞∑
t=0

βtu(ct),

s.t. f (kt−1) + (1 − δ)kt−1 +
mt−1

1 + πt
+ τt +

1 + it−1

1 + πt
bt−1 ≥ ct + kt + mt + bt,

mt−1

1 + πt
+ τt ≥ ct.
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3.2 Getting the First Order Conditions

The optimization problem is a problem with several inequality constraints. Instead of worry-
ing about the state / control variables, this time we simply start from the stone age approach
– using Kuhn-Tucker Theorem.

Set up the Lagrangian for this problem

L =

+∞∑
t=0

{
βtu(ct) + λt

[
f (kt−1) + (1 − δ)kt−1 +

mt−1

1 + πt
+ τt +

1 + it−1

1 + πt
bt−1 − ct − kt − mt − bt

]
+µt

[
mt−1

1 + πt
+ τt − ct

]}
,

in which λt and µt are the Lagrange multipliers for these two inequality constraints respec-
tively.

The first order conditions ∀t ∈ {0, 1, 2, . . .} are

∂L

∂ct
= βtu′(ct) − λt − µt = 0, (35)

∂L

∂kt
= λt+1

[
f ′(kt) + (1 − δ)

]
− λt = 0, (36)

∂L

∂mt
=

λt+1

1 + πt+1
− λt +

µt+1

1 + πt+1
= 0, (37)

∂L

∂bt
= λt+1

1 + it

1 + πt+1
− λt = 0. (38)

From (38) one can get the relationship between λs of the neighboring periods

λt =
1 + it

1 + πt+1
λt+1. (39)

From (36) one can also get the relationship between λs of the neighboring periods

λt = λt+1
[
f ′(kt) + (1 − δ)

]
, (40)

λt = λt+1(1 + rt) (41)

using the fact that rt = f ′(kt) − δ. Then combining the results of (41)and (39)

1 + it = (1 + rt)(1 + πt+1), (42)
it ≈ rt + πt+1. (43)
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And equations (42) and (43) again exhibit the Fisher Parity.

From (37) one can get the relationship between the two Lagrange multipliers

λt =
λt+1 + µt+1

1 + πt+1
, (44)

and insert equation (39) one can see that

1 + it

1 + πt+1
λt+1 =

λt+1 + µt+1

1 + πt+1
, (45)

µt+1 = itλt+1 (46)

showing the intratemporal relationship between the two Lagrange multipliers.

3.3 Stationary Equilibrium Analysis

From (35) the discounted marginal utility of each period t is

βtu′(ct) = λt + µt, (47)

βtu′(ct) =
1 + it−1

it−1
µt. (48)

Notice that µt is the present value of the shadow price of the cash-in-advance constraint,
which is the current value, denoted by µ̃t, discounted by βt. Therefore (48) can be rewritten
as

βtu′(ct) =
1 + it−1

it−1
βtµ̃t, (49)

µ̃t

u′(ct)
=

it−1

1 + it−1
(50)

which in the steady can be written as

µ̃∗

u′(c∗)
=

i∗t
1 + i∗t

. (51)

Note that equation (51) doesn’t only possess the same form as equation (28), but also has
exactly the same interpretation. Remember that the shadow price in the Lagrangian just means
by how much the object fuction responses to a unit slackness in the constraint. Therefore µ̃∗

here implies by how much the instantaneous utility fuction u(ct) responses if one unit of real
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money balance is added to the period t’s cash-in-advance constraint, i.e. the marginal utility
with respect to real money balance in the steady state du(c∗)

dm∗ . Thus equation (51) has the same
meaning as equation (28), reflecting the relative price of money holding and consumption
goods.

One can find more such similarities. Insert (46) into (47)

βtu′(ct) = (1 + it−1)λt, (52)
βt+1u′(ct+1) = (1 + it)λt+1. (53)

Divide (53) by (52)

β
u′(ct+1)
u′(ct)

=
1 + it

1 + it−1

λt+1

λt
. (54)

Insert (41) into (54), using the fact that in the steady state ct = c∗ and it = i∗ one can arrive at

1 =
1 + ρ

1 + r∗
, (55)

which corresponds to equation (25).

Remember that one important feature of the money-in-the-utility model is the (super-)neutrality
of money. Is this feature still maintained in current cash-in-advance model?

To answer this question, again we start from determining the steady state values of the real
variables. First notice that in the optimum the cash-in-advance constraint is binding,

ct =
mt−1

1 + πt
+ τt, (56)

and in the steady state the transfer is entirely implemented by the injection of money, i.e.

τt =
Mt − Mt−1

Pt
. (57)

Combining (56) and (57) one can easily see that ct = mt. Therefore the steady state value
of real money balance is also constant, mt = m∗. By the same argument as S 2.4.1 the
current model also maintains the neutrality of money (and the steady state inflation rate is
equal to the growth rate of money, π∗ = µ).

Furthermore, equation (55) determines that the steady state real interest rate only depends on
an exogenous variable. This implies that the steady state capital stock is
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k∗ =
(
f ′
)−1 (r∗ + δ) . (58)

Also by the same argument as S 2.4.2 the steady state consumption is given by

c∗ = f (k∗) − δk∗. (59)

Equations (58) and (59) simply show the superneutrality of money holds here, for neither k∗

nor c∗ is affected by the inflation rate.

4 Readings

Walsh (2010), C 2 – 3, Galí (2008), C 2.

5 Bibliographic Notes

The money-in-the-utility model is based on Sidrauski (1967). The cash-in-advanced model
originated from Clower (1967) and was formalized in Grandmont and Younes (1972). The
model presented here is a much simplified version of Lucas (1980) and Svensson (1985), the
timing struction following the convention of the latter.

Both C 4, Blanchard and Fischer (1989) and C 3, Walsh (2010) include rich
surveys of the other models exploring the roles of money, such as Baumol (1952) & Tobin
(1956) type of shopping-time models and so on. The reason why the latter book is recom-
mended in the readings is because the former is mostly based on the overlapping generation
model which is gradually losing its popularity in current macro studies, for in such model
money essentially functions as a medium for storage and people often find it hard to recon-
cile empirical works in this framework (however, some interesting researches, both theoretical
and empirical, based on the Blanchard-Yaari type of overlapping generation models are still
blossoming). Nevertheless, Blanchard and Fischer (1989) is still recommended as an excel-
lent reading for the same issues explored in an alternative framework. Galí (2008), C
2, provides a concise, pedagogical, yet state-of-art summary of baseline monetary models.

Current chapter is a pivotal leap from neoclassical growth theories towards the monetary
economics. Since a large share of modern macro studies are actually based on the samilar
settings, it’s important to understand the features of these models in order to see how people
manage to reach the results they desire by extending the prototype models in different ways.
On the other hand, the presented models, explaining the roles of money without introducing
short-run rigidities, simply bring out more troubles than the questions they solve, especially
when people attempt to see the policy implications (for example, the famous Friedman rule,
which is in fact a very robust phenomenon in these models). There is a huge literature trying
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to get around the problems in different dimensions, e.g. Chari, Christiano and Kehoe (1991,
1996), Schmitt-Grohé and Uribe (2004a, 2004b and 2005), etc. We will come across these
issues later.

6 Exercises

6.1 Money in the Utility: Equilibrium and Stability

Consider an infinitely lived agent with utility function

+∞∫
0

[c(t) + V(m(t))] e−ρtdt,

where c is consumption, m are real money holdings, and V is an increasing and concave
function. Money is the only asset. Income is exogenously given by y(t).

a) Formulate the transition equation in real balances (money holdings).

b) Formulate the Hamiltonian and first order conditions.

c) The growth rate of nominal money supply is given by µ. Derive a differential equation
describing the optimal real balances.

d) Discuss potential steady state equilibria and their stability. Characterize conditions that
rule out hyperinflationary bubbles.

e) Discuss the special case of V(m) = mα.

6.2 Money in the Utility

Consider a discrete version of Sidrauski’s money in the utility approach: An infinitely lived
representative agent maximizes discounted life time utility

+∞∑
t=0

βtU(ct,mt)

with β ∈ (0, 1) as discount rate, ct consumption and mt = Mt
Pt

as real money balances. Each
period, the agent is endowed with yt. yt can be used for private or government consumption:
yt = ct + gt. Initially, the agent owns the money stock M0 and one period nominal government
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bonds B0 . Period t bonds Bt yield a return it. The government finances gt via taxes τt ,
seigniorage or government bonds.

a) Formulate the period budget constraint of both the agent and the government and derive
the present value budget constraint.

b) Characterize the first-order conditions for the agent’s optimal path.

c) Show that with additive separable preferences U(ct,mt) = u(ct) + v(mt), the real rate of
interest depends only on the time path of the real resources available for consumption.

d) Assume that U(ct,mt) = cαt + mα
t . Derive the money demand function m(ct, it) and char-

acterize elasticity with respect to ct and it . Show why the price level may not be determinate
if the central bank pegs the interest rate to a fixed level it = i.

e) Assume that both endowment and government spending are constant: yt = y; gt = g.
Characterize conditions for steady state. Show that the Friedman rule maximizes per period
utility. Discuss reasons why this rule may not be optimal in a more general setting.
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