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Dynamic Programming:

A Less Technical
Approach

In mathematics you don’t understand things. You just get used to them.

—Johann von Neumann

In precisely built mathematical structures, mathematicians find the same sort of

beauty others find in enchanting pieces of music, or in magnificent architecture.

There is, however, one great difference between the beauty of mathematical struc-

tures and that of great art. Music by Mozart, for instance, impresses greatly even

those who do not know musical theory; the cathedral in Cologne overwhelms

spectators even if they know nothing about Christianity. The beauty in mathemat-

ical structures, however, cannot be appreciated without understanding of a group

of numerical formulae that express laws of logic. ... Accordingly, I once believed

that without numerical formulae, I could never communicate the sweet melody

played in my heart.

—Kiyosi Itô, Kyoto Lecture, 1998
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1 Introduction

Dynamic programming is another method for solving dynamic optimization problems. It be-
comes an important tool in macroeconomic literature, and has some appealing features in its
solution strategies. It is especially suitable for solving problems under uncertainty, and be-
cause of its recursive nature computer simulation is easily done when open form solution is
hardly to be obtained.

The basic idea of dynamic programming is briefly introduced in Section 2. Section 3 shows
three methods of how to derive first order conditions. An example gives more details in Sec-
tion 3.4. Then Section 4 discusses the computational methods for solutions under various oc-
casions. Section 5.1 and 5.2 extend the methods for problems under uncertainty and continous
time, hoping to unveil the tip of iceberg, i.e. the rich applications of dynamic programming,
to readers.

This chapter is written in a non-technical way in the sense that it only tells readers how to
apply dynamic programming to solve economic problems, without involving the concrete
mathematics. However, a brief introduction of functional analysis in A A.2 shows that
what we have done throughout this chapter is indeed theoretically sound.

2 Basic Idea

Consider a general discrete-time optimization problem

max
{ct,kt+1}+∞t=0

+∞∑

t=0

βtu(ct)

s.t. kt+1 = f (ct, kt).

You may interpret this problem in an economic context. Given any capital stock level kt in
period t, a representative agent maximizes her life-long utility by choosing her period t con-
sumption level ct (such variables whose value is directly chosen by individuals are called con-
trol variables; in contrast those not directly chosen by individuals are called state variables
such as kt). So essentially the optimization problem is to seek a policy function ct = h(kt)
which maps the state kt into the control ct. As soon as ct is chosen, the transition function
kt+1 = f (ct, kt) determines next period state kt+1 and the same procedure repeats. Such proce-
dure is recursive.

The basic idea of dynamic programming is to collapse a multi-periods problem into a se-
quence of two-periods problem at any t using the recursive nature of the problem
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V(kt) = max
ct ,kt+1

+∞∑

i=0

βiu(kt+i)

= max
ct ,kt+1

u(ct) + β

+∞∑

i=0

βiu(ct+i+1)


= max

ct ,kt+1
{u(ct) + βV(kt+1)}

s.t. kt+1 = f (ct, kt). (1)

Equation V(kt) = maxct ,kt+1 {u(ct) + βV(kt+1)} is known as Bellman equation. The value func-
tion V(·) is only a function of state variable kt because the optimal value of ct is just a function
of kt. Then the original problem can be solved by the methods we learned for two-periods
problems plus some tricks.

3 Getting the Euler Equation

The key step now is to find the proper first order conditions. There are several possible ap-
proaches, and readers may pick up one of them with which he or she feels comfortable.

3.1 Using Lagrangian

Since the problem looks pretty similar to a maximization problem with equality constraint,
one may suggest Lagrangian — Let’s try.

Rewrite V(kt) as

V(kt) = max
ct,kt+1

{
u(ct) + βV(kt+1) + λt

[
f (ct, kt) − kt+1

]}
︸                                            ︷︷                                            ︸

Lt

.

S 1 Since V(kt) is maximized value for Lagrangian, the first order conditions with re-
spect to ct and kt+1 must hold,

u′(ct) + λt
∂ f (ct, kt)
∂ct

= 0, (2)

βV ′(kt+1) − λt = 0. (3)

S 2 Since V(kt) is optimized at kt, then
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V ′(kt) = u′(ct)
dct

dkt
+ βV ′(kt+1)

dkt+1

dkt
+

dλt

dkt

[
f (ct, kt) − kt+1

]

+λt

[
∂ f (ct, kt)
∂kt

+
∂ f (ct, kt)
∂ct

dct

dkt
− dkt+1

dkt

]

=

[
u′(ct) + λt

∂ f (ct, kt)
∂ct

]

︸                     ︷︷                     ︸
(A)

dct

dkt
+

[
βV ′(kt+1) − λt

]
︸             ︷︷             ︸

(B)

dkt+1

dkt

+
dλt

dkt

[
f (ct, kt) − kt+1

]
︸             ︷︷             ︸

(C)

+λt
∂ f (ct, kt)
∂kt

.

(A) = 0 by (2), (B) = 0 by (3), and (C) = 0 by first order condition of Lagrangian. Therefore

V ′(kt) = λt
∂ f (ct, kt)
∂kt

. (4)

S 3 By (2) and (3) eliminate λt

u′(ct) + βV ′(kt+1)
∂ f (ct, kt)
∂ct

= 0.

And since t is arbitrarily taken, this equation must hold if we take one period backward

u′(ct−1) + βV ′(kt)
∂ f (ct−1, kt−1)

∂ct−1
= 0. (5)

Next insert (2) into (4) to elimate λ and (5) into (4) to elimate V ′(kt), then Euler equation is
obtained.

3.2 Tracing Dynamics of Costate Variable

The other way of thinking is to trace the dynamics of costate variable V(kt).

S 1 Since V(kt) is maximized value of u(ct) + βV(kt+1), then the first order condition
with respect to ct gives

u′(ct) + βV ′(kt+1)
∂kt+1

∂ct
= u′(ct) + βV ′(kt+1)

∂ f (ct, kt)
∂ct

= 0. (6)

S 2 Since V(kt) is optimized at kt, then
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V ′(kt) = u′(ct)
dct

dkt
+ βV ′(kt+1)

[
∂ f (ct, kt)
∂kt

+
∂ f (ct, kt)
∂ct

dct

dkt

]

=

[
u′(ct) + βV ′(kt+1)

∂ f (ct, kt)
∂ct

]
dct

dkt
+ βV ′(kt+1)

∂ f (ct, kt)
∂kt

.

Apply (6) and get

V ′(kt) = βV ′(kt+1)
∂ f (ct, kt)
∂kt

. (7)

Since t is arbitrarily taken, (6) also holds for one period backward, i.e.

V ′(kt) = − u′(ct−1)

β∂ f (ct−1,kt−1)
∂ct−1

. (8)

S 3 Apply (6) & (8) into (7) and obtain Euler equation.

3.3 Using Envelope Theorem

Solve the budget constraint for ct and get ct = g(kt, kt+1). Apply it to V(kt) and get a univariate
optimization problem

V(kt) = max
kt+1
{u(g(kt, kt+1)) + βV(kt+1)} .

S 1 Similar as before, since V(kt) is the maximized value of u(g(kt, kt+1)) + βV(kt+1),
then the first order condition with respect to kt+1 gives

u′(g(kt, kt+1))
∂g(kt, kt+1)
∂kt+1

+ βV ′(kt+1) = 0. (9)

S 2 Since V(kt) is already optimized at kt, differentiating V(kt) with respect to kt gives

dV(kt)
dkt

=
∂V(kt)
∂kt︸ ︷︷ ︸
(A)

+
∂V(kt)
∂kt+1

∂kt+1

∂kt︸         ︷︷         ︸
(B)

. (10)

This is pretty intuitive: kt may generate a direct effect on V(kt) as part (A) shows; however,
kt may also generate an indirect effect on V(kt) through kt+1 (remember the dynamic budget
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constraint). And since V(kt) is optimized by kt+1, the first order condition implies that ∂V(kt)
∂kt+1

=

0. Therefore equation (10) becomes

V ′(kt) =
∂V(kt)
∂kt

= u′(g(kt, kt+1))
dg(kt, kt+1)

dkt
. (11)

The mathematics behind it is the famous Envelope Theorem. You may find people call it
Benveniste-Scheinkman condition in some cases.

S 3 Similar as before, take one period forward for (11) and apply it into (9) then obtain
Euler equation.

3.4 Example

Consider a discrete time Ramsey problem for a decentralized economy

max
{ct,bt}+∞t=0

+∞∑

t=0

βtu(ct)

s.t. bt+1 − bt = wt + rtbt − ct − nbt.

Collapse the infinite horizon problem into a sequence of two-periods problem

V(bt) = max
ct ,bt+1

+∞∑

i=0

βiu(ct+i)

= max
ct ,bt+1

u(ct) + β

+∞∑

i=0

βiu(ct+i+1)


= max

ct ,bt+1
{u(ct) + βV(bt+1)}

s.t. bt+1 = wt + (1 + rt)bt − ct − nbt.

Now we solve the problem with all three approaches.

3.4.1 Using Lagrangian

Rewrite Bellman equation in Lagrangian form

V(bt) = max
ct ,bt+1
{u(ct) + βV(bt+1) + λt [wt + (1 + rt)bt − ct − nbt − bt+1]} .
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S 1 The first order conditions of Lagrangian are

u′(ct) − λt = 0, (12)
βV ′(bt+1) − λt = 0, (13)

and eliminate λt to get

u′(ct) = βV ′(bt+1). (14)

S 2 Now differentiate V(bt) at bt

V ′(bt) = u′(ct)
dct

dbt
+ βV ′(bt+1)(1 + rt − n)

+
dλt

dkt
[wt + (1 + rt)bt − ct − nbt − bt+1]︸                                    ︷︷                                    ︸

=0

+λt

[
(1 + rt − n) − dct

dbt
− (1 + rt − n)

]

=
[
u′(ct) − λt

]
︸        ︷︷        ︸

=0

dct

dbt
+

[
βV ′(bt+1) − λt

]
︸             ︷︷             ︸

=0

(1 + rt − n) + λt(1 + rt − n).

That is,

V ′(bt) = λt(1 + rt − n). (15)

S 3 Insert (12) and (14) into (15) and get the desired result.

3.4.2 Tracing Dynamics of Costate Variable

Now solve the same problem by tracing the dynamics of the costate variable.

S 1 Since V(bt) is the maximized value of u(ct) + βV(bt+1), then the first order condition
with respect to bt+1 gives

−u′(ct) + βV ′(bt+1) = 0. (16)

S 2 Now differentiate V(bt) at bt
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V ′(bt) = u′(ct)
∂ct

∂kt
+ βV ′(bt+1)

[
(1 + rt − n) − ∂ct

∂kt

]
.

That is just

V ′(bt) = β(1 + rt − n)V ′(bt+1). (17)

S 3 Insert (16) twice into (17) and get the desired result.

3.4.3 Using Envelope Theorem

Now solve the same problem with Envelope Theorem.

S 1 Since V(bt) is maximized value of u(ct) + βV(bt+1), then the first order condition
with respect to bt+1 gives

−u′(ct) + βV ′(bt+1) = 0. (18)

S 2 Now the problem is to find V ′(bt+1). Differentiate V(bt) at bt

V ′(bt) =
∂V(bt)
∂bt

= (1 + rt − n)u′(ct). (19)

S 3 Take one period backward for (18) and insert into (19) to obtain the Euler equation.

4 ? Solving for the Policy Function

As seen in previous sections policy function ct = h(kt) captures the optimal solution for each
period given the corresponding state variable, therefore one may desire to get the solution of
the policy function. Dynamic programming method has a special advantage for this purpose,
and we will see several approaches in the following.

Now consider the problem of Brock & Mirman (1972). Suppose utility function takes the
form ut = ln ct and the production function follows Cobb-Douglas technolody. No deprecia-
tion and population growth.

max
{ct,kt}+∞t=0

∗∞∑

t=0

βt ln ct
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s.t. kt+1 = kαt − ct.

4.1 Solution by Iterative Substitution the Euler Equation

Recall that the recursive structure of dynamic programming method implies that the problem
that the optimizer faces in each period is the same as that she faces last period or next period,
so the solution to such a problem should be time-invariant. Thus one can start from deriving
the solution under some circumstances and iterate it on an infinite time horizon until it is time
invariant. However this approach only works when the problem is simple.

4.1.1 Forward Induction

Set up the Bellman equation and solve for Euler equation. This gives

1
ct

=αβ
kα−1

t+1

ct+1

kt+1

ct
=αβ

kαt+1

ct+1

kαt − ct

ct
=αβ

kαt+1

ct+1

kαt
ct

=αβ
kαt+1

ct+1
+ 1.

Apply this condition to itself and get a geometric serial

kαt
ct

= 1 + αβ

(
1 + αβ

kαt+2

ct+2

)

= 1 + αβ + α2β2 + α3β3 + . . .

=
1

1 − αβ,

(why?) and this gives

ct = (1 − αβ)kαt .

Another way to see this is exploring saving rate dynamics. Express ct by kt and kt+1

1
kαt − kt+1

= β
1

kαt+1 − kt+2
αkα−1

t+1 . (20)
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Define saving rate at time t as

st =
kt+1

kαt
,

Rearranging (20) gives

1
kαt

1
1 − st

= β
1

kαt+1

1
1 − st+1

αkα−1
t+1

kt+1

kαt

1
1 − st

=
αβ

1 − st+1

st

1 − st
=

αβ

1 − st+1
,

and this is

st+1 = 1 + αβ − αβ
st
. (21)

1t
s

t
s

45

1

1t t
s f s

Fig. 1. S  st

Plot st+1 as a function of st as F 1, and this gives two solutions, αβ < 1 and 1 respectly.
Only the former is plausible. Then

ct = (1 − st)kαt = (1 − αβ)kαt .
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4.1.2 Backward Induction

Suppose that the world ends after some finite peroid T . Then surely for the last period

sT = 0.

Apply this to (21)

sT = 0 = 1 + αβ − αβ

sT−1
,

solve to get

sT−1 =
αβ

1 + αβ
.

Continue this process,

sT−1 =
αβ

1 + αβ
= 1 + αβ − αβ

sT−2
,

and this yields

sT−2 =
αβ + α2β2

1 + αβ + α2β2 .

We find that for any t between 0 and T

st =

∑T−t
i=1 α

iβi

1 +
∑T−t

i=1 α
iβi

=

αβ(1−αT−tβT−t)
1−αβ

1 +
αβ(1−αT−tβT−t)

1−αβ
=

αβ(1 − αT−tβT−t)
1 − αβ + αβ(1 − αT−tβT−t)

.

And in the limit

lim
T−t→+∞

st = αβ

implying that

ct = (1 − αβ)kαt .
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4.2 Solution by Value-Function Iteration

Another solution method is based on iteration of the value function. The value function actu-
ally will be different in each period, just as we earlier found the function g(kt) was different
depending on how close we were to the terminal period. But it can be shown (but we do not
show this here) that as we iterate through time, the value function converges, just as g(kt)
converged in our earlier example as we iterated back further away from the terminal period.
This suggests that if we iterate on an initial guess for the value function, even a guess we
know is incorrect, the iterations eventually will converge to the true function.

4.2.1 Guess and Verify

One may guess the form of solution and try to verify whether it’s true. We guess that

V(kt) = A + B ln kt.

Then the problem becomes

V(kt) = max
ct ,kt+1
{ln ct + βV(kt+1)}

= max
ct ,kt+1
{ln ct + β(A + B ln kt+1)}

s.t. kt+1 = kαt − ct.

The first order condition with respect to kt+1 yields

− 1
ct

+
βB
kt+1

= 0,

kt+1 = βB(kαt − kt+1),

kt+1 =
βB

1 + βB
kαt ,

ct =
1

1 + βB
kαt .

Then apply the results to the Bellman equation, and the following must hold if our conjecture
is right

V(kt) = ln
(

βB
1 + βB

kαt

)
+ β

[
A + B ln

(
1

1 + βB
kαt

)]

= ln βB + βA − (1 + βB) ln(1 + βB)︸                                     ︷︷                                     ︸
A

+α(1 + βB)︸     ︷︷     ︸
B

ln kt

= A + B ln kt.
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Solve to get

B =
α

1 − αβ,

A =
1

1 − β
[
ln(1 − αβ) +

αβ

1 − αβ lnαβ
]
,

ct =
1

1 + βB
kαt = (1 − αβ)kαt .

and therefore

kt+1 =
βB

1 + βB
kαt = αβkαt ,

ct =
1

1 + βB
kαt = (1 − αβ)kαt .

4.2.2 Value-Function Iteration

Unfortunately few problems can be solved by simple conjectures. As a last resort one needs
onerous effort on value functions. Suppose that the world ends after some finite peroid T .
Then surely

V(kT+1) = 0,

as well as

cT = kαT , and kT+1 = 0.

Apply these in Bellman equation,

V(kT ) = ln kαT + βV(kT+1) = ln kαT .

For one period backward,

V(kT−1) = max
cT−1,kT

{ln(cT−1) + βV(kT )}
= max

cT−1,kT

{
ln(cT−1) + β ln kαT

}

s.t. kT = kαT−1 − cT−1.

This is simply a two-period intertemporal optimization with an equality constraint. Using
Lagrangian
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L = ln(cT−1) + β ln kαT + λ
[
kαT−1 − cT−1 − kT

]
,

first order conditions give

∂L

∂cT−1
=

1
cT−1

− λ = 0,

∂L

∂kT
= αβ

kα−1
T

kαT
− λ = αβ

1
kT
− λ = 0,

∂L

∂λ
= kαT−1 − cT−1 − kT = 0.

Solve to get

cT−1 =
1

1 + αβ
kαT−1,

kT =
αβ

1 + αβ
kαT−1.

Then V(kT−1) can be expressed as

V(kT−1) = ln
(

1
1 + αβ

kαT−1

)
+ β ln

(
αβ

1 + αβ
kαT−1

)α

=αβ ln(αβ) − (1 + αβ) ln(1 + αβ) + (1 + αβ) ln kαT−1.

Again take one period backward,

V(kT−2) = max
cT−2,kT−1

{ln(cT−2) + βV(kT−1)}
s.t. kT−1 = kαT−2 − cT−2,

and the same procedure applies. After several rounds you may find that for time t long before
T the value function converges to

V(kt) = max
ct ,kt+1

{
ln ct + β

[
1

1 − β
(
ln(1 − αβ) +

αβ

1 − αβ lnαβ
)

+
α

1 − αβ ln kt+1

]}

s.t. kt+1 = kαt − ct.

As before since V(kt) is the maximized value the first order condition with respect to kt+1 still
holds
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− 1
ct

+
αβ

1 − αβ
1

kt+1
= 0,

this yields

ct = (1 − αβ)kαt
kt+1 =αβkαt .

Although this solution method is very cumbersome and computationally demanding since it
rests on brutal-force iteration of the value function, it has the advantage that it always works
if the solution exists. Actually, the convergence of the value function is not incidential. A-
 A.2 tells us that the convergence result is always achieved as long as the value function
contains a contraction mapping (which works for most of dynamic optimization problems un-
der the neoclassical assumptions). Such result is crucial for both theory and application. In
theory, it ensures that a unique equilibrium solution (the fixed point) exists so that we can say
what happens in the long run; in application, it implies that even we start iteration from an
arbitrary value function, the value function will finally converge to the true one. Therefore,
in practice when the value function is hardly solvable in an analytical way, people usually
set up the computer program to perform the iteration and get a numerical solution. An exam-
ple in A B charaterizes a typical solution procedure using the popular computational
softwares, and shows some tips in designing your own numerical programs.

5 Extensions

5.1 Extension 1: Dynamic Programming under Uncertainty

Consider a general discrete-time optimization problem

max
{ct,kt+1}+∞t=0

E0


+∞∑

t=0

βtu(ct)


s.t. kt+1 = zt f (kt) − ct,

in which the production f (kt) is affected by an i.i.d process {zt}+∞t=0 (technology shock, which
realizes at the beginning of each period t) meaning that such shock varies over time, but
its deviations in different periods are uncorrelated (think about the weather for the farmers).
Now the agent has to maximize the expected utility over time because future consumption is
uncertain.

Since technology shocks realize at the beginning of each period, the value of total output is
known when consumption takes place and when the end-of-period capital kt+1 is accumulated.
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The state variables are now kt and zt. The control variables are ct. Similar as before, set up the
Bellman equation as

V(kt, zt) = max
ct,kt+1
{u(ct) + βEt [V(kt+1, zt+1)]}

s.t. kt+1 = zt f (kt) − ct.

Let’s apply the solution strategies introduced before and see whether they work.

S 1 The first order condition with respect to kt+1 gives

−u′(ct) + βEt

[
dV(kt+1, zt+1)

dkt+1

]
= 0. (22)

Think why it is legal to take derivative within expectation operator.

S 2 By Envelope Theorem differentiating V(kt, zt) with respect to kt gives

dV(kt, zt)
dkt

= u′(ct)zt f ′(kt). (23)

S 3 Take one step forward for (23) and apply it into (22), then we get

u′(ct) = βEt
[
u′(ct+1)zt+1 f ′(kt+1)

]
.

Suppose that

f (kt) = kαt ,
u(ct) = ln ct.

Then Euler equation becomes

1
ct

= βEt

[
1

ct+1
zt+1αkα−1

t+1

]
.

In deterministic case our solutions were

ct = (1 − αβ)kαt ,
kt+1 =αβkαt .
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Now let’s guess that under uncertainty the solution is of similar form such that

ct = (1 − A)ztkαt ,
kt+1 = Aztkαt ,

and check whether it’s true or false. The Euler equation becomes

1
(1 − A)ztkαt

= βEt

[
1

(1 − A)zt+1kαt+1
zt+1αkα−1

t+1

]

=αβ

[
1

(1 − A)kt+1

]

=αβ

[
1

(1 − A)Aztkαt

]
.

Therefore it’s easily seen that

A = αβ,

which seems quite similar as before.

However since the consumption and capital stock are random variables, it’s necessary to
explore their properties by charaterizing corresponding distributions.

Assume that ln zt ∼ N
(
µ, σ2

)
. Take log of the solution above,

ln kt+1 = lnαβ + ln zt + α ln kt.

Apply this result recursively,

ln kt = lnαβ + ln zt−1 + α ln kt−1

= lnαβ + ln zt−1 + α(lnαβ + ln zt−2 + α ln kt−2)
. . .

=
(
1 + α + α2 + . . . + αt−1

)
lnαβ

+
(
ln zt−1 + α ln zt−2 + . . . + αt−1 ln z0

)

+αt ln k0.

In the limit the mean of ln kt converges to

lim
t→+∞

E0 [ln kt] =
lnαβ + µ

1 − α .
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The variance of ln kt is defined as

var[ln kt] = E
{
(ln kt − E [ln kt])2

}

= E
{((

1 + α + α2 + . . . + αt−1
)

lnαβ + (ln zt−1 + α ln zt−2

+ . . . + αt−1 ln z0

)
+ αt ln k0 −

[(
1 + α + α2 + . . . + αt−1

)
lnαβ

+
(
1 + α + . . . + αt−1

)
µ + αt ln k0

])2
}

= E
{[

(ln zt−1 − µ) + α (ln zt−2 − µ) + α2 (ln zt−2 − µ) + . . .

+αt−1 (ln z0 − µ)
]2
}

= E




t∑

i=1

αi−1(ln zt−i − µ)


2

=

t∑

i=1

α2i−2E
[
(ln zt−i − µ)2

]

+
∑

∀i, j∈{1,...,t}i, j

αi−1α j−1E
[
(ln zt−i − µ)(ln zt− j − µ)

]

=
1 − α2t

1 − α2 var [ln zt]

=
1 − α2t

1 − α2 σ
2,

or simply pass the variance operator through the sum and get

var[ln kt] = var[ln zt−1] + α2var[ln zt−2] + . . . + α2t−2var[ln z0]
=

(
1 + α2 + . . . + α2t−2

)
σ2

=
1 − α2t

1 − α2 σ
2.

In the limit the variance of ln kt converges to

lim
t→+∞

var(ln kt) =
σ2

1 − α2 .

As a conclusion one can say that in the limit ln kt converges to a distribution with mean lnαβ+µ

1−α
and variance σ2

1−α2 .
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5.2 ? Extension 2: Dynamic Programming in Continuous Time

Till now one may get the illusion that dynamic programming only fits discrete time. Now with
slight modification we’ll see that it works for continuous time problems as well. Consider a
general continuous time optimization problem

max
ct ,kt

+∞∫

t=0

e−ρtu(ct)dt

s.t. k̇t = φ(ct, kt) = f (kt) − ct

in which we assume that φ(ct, kt) is quasi-linear in ct only for simplicity.

Following Bellman’s idea, for arbitrary t ∈ [0,+∞) define

V(kt) = max
ct ,kt

+∞∫

t

e−ρ(τ−t)u(cτ)dτ.

Now suppose that time goes from t to t + ∆t, in which ∆t is very small. Let’s imagine what
happened from t on. First u(ct) accumulates during ∆t. Since ∆t is so small that it’s reasonable
to think that u(ct) is nearly constant from t to t + ∆t, and the accumulation of utility can
be expressed as u(ct)∆t. Second, from t + ∆t onwards the total utility accumulation is just
V(kt+∆t). Therefore V(kt) is just the sum of utility accumulation during ∆t, and discounted
value of V(kt+∆t), i.e.

V(kt) = max
ct ,kt

{
u(ct)∆t +

1
1 + ρ∆t

V(kt+∆t)
}

(Why V(kt+∆t) is discounted by 1
1+ρ∆t ?). Rearrange both sides

(1 + ρ∆t)V(kt) = max
ct,kt
{u(ct)(1 + ρ∆t)∆t + V(kt+∆t)}

ρ∆tV(kt) = max
ct,kt
{u(ct)(1 + ρ∆t)∆t + V(kt+∆t) − V(kt)}

ρV(kt) = max
ct,kt

{
u(ct)(1 + ρ∆t) +

V(kt+∆t) − V(kt)
∆t

}
,

and take limit

ρV(kt) = lim
∆t→0

max
ct ,kt

{
u(ct)(1 + ρ∆t) +

V(kt+∆t) − V(kt)
∆t

}
.
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Finally this gives

ρV(kt) = max
ct,kt

{
u(ct) + V ′(kt)k̇t

}

= max
ct,kt
{u(ct) + V ′(kt)φ(ct, kt)} .

Then you are able to solve it by any of those three approaches. Here we only try one of them.

S 1 First order condition for the maximization problem gives

u′(ct) + V ′(kt)
∂φ(ct, kt)
∂ct

= u′(ct) − V ′(kt) = 0. (24)

S 2 Differentiating V(kt) gives

ρV ′(kt) = V ′′(kt)φ(ct, kt) + V ′(kt)
∂φ(ct, kt)
∂kt

,

that is,

[
ρ − ∂φ(ct, kt)

∂kt

]
V ′(kt) = V ′′(kt)φ(ct, kt) = V ′′(kt)k̇t.

Take derivative of V ′(kt) with respect to t

dV ′(kt)
dt

= V̇ ′(kt) = V ′′(kt)k̇t =

[
ρ − ∂φ(ct, kt)

∂kt

]
V ′(kt),

and get

V̇ ′(kt)
V ′(kt)

= ρ − ∂φ(ct, kt)
∂kt

= ρ − f ′(kt). (25)

S 3 Take derivative of (24) with respect to t and get

u̇′(ct)
u′(ct)

=
u′′(ct)
u′(ct)

ċt =
V̇ ′(kt)
V ′(kt)

= ρ − f ′(kt)
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by (25), and further arrangment gives

−u′′(ct)ct

u′(ct)
ċt

ct
= f ′(kt) − ρ

ċt

ct
=σ

[
f ′(kt) − ρ] .

Note that this is exactly the same solution as we got by the optimal control method.

6 Conclusion: Recursive Methods Revisited

Readers may have already the idea of how to solve dynamic programming problems using
recursive methods. In general this consists of the following steps:

• Find recursive structure of the problem, i.e. define the value function such that the problem
“repeats itself”in every period;

• Find the proper state (which capture the situation when the period starts) and control (which
the decision maker wants to choose in the period) variables;

• Find the law of transition between periods, which maps the state and control variables of
today into the ones of tomorrow.

Then you would get a full-fledged Bellman equation, and try to get what you are interested
in out of it — normally this is simply a procedure of getting used to mathematics.

7 Readings

Ljungqvist and Sargent (2004), C 3.

8 Bibliographic Notes

Dynamic programming methods can be traced back to Bellman (1957), and quite a few ex-
cellent textbooks can be referred to. Stokey, Lucas with Prescott (1989) provides a sound
mathematical foundation for recursive methods, and Stachurski (2009) is by far the best in-
troduction to stochastic dynamic programming and computational methods with economic
applications, but one needs rich knowledge of modern analysis (e.g. Rudin (1976), or Kol-
mogorov and Fomin (1965)) to go through these two books. Ljungqvist and Sargent (2004)
is an encyclopedic approach to the applications and becomes a standard configuration for
beginners. Wälde (2010) provides a least demanding access to solution methods.

21



The classical text of Dixit and Pindyck (1994) gives in-depth extensions of dynamic problems
under uncertainty, which is surely a pleasant reading for enthusiastic readers.

9 Exercises

9.1 Dynamic Programming with Externalities

This question concerns a representative agent economy with a continuum of consumers. Pref-
erences are

+∞∑

t=0

βt ln (ct) ,

in which ct is consumption in period t. Each individual has the production technology

ct + kt+1 = Akαt Kγ
t ,

in which kt is her own capital at the beginning of period t and Kt is the average stock of capital
in the economy as a whole, and the parameters satisfy 0 < α < 1 and γ > 0. Each period,
each agent chooses ct and kt+1, given kt and Kt. In equilibrium, of course, it must be the case
that kt = Kt for all t. Let

Kt+1 = f (Kt)

be the equilibrium law of motion for capital in the economy. Let

Kt+1 = g(Kt)

be the socially optimal law of motion for capital in the economy. The following questions
require you to calculate both of these functions f and g.

a) Socially optimal allocation

(1)  Formulate the Bellman equation for the socially optimal allocation.
(2)  Solve for the value function.
(3)  Verify that the policy function takes the form

g(K) = θAKα+γ

and find the value of θ.
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b) Equilibrium allocation

(1)  Formulate the Bellman equation for an equilibrium.
(2)  Solve for the value function.
(3)  Verify that the policy function takes the form

f (K) = µAKα+γ

and find the value of µ.

9.2 Dynamic Programming with a Kinked Production Function

Consider an economy with a single consumer whose preference are defined by the linear
utility function:

+∞∑

t=0

βtct.

There is a single firm which operates the production technology

yt =


A(kt − k) + Bk for kt ≥ k

Bkt for kt < k
.

The parameters of the utility and production functions satisfy:

A <
1
β
< B.

Capital evolves according to

kt+1 = it,

i.e. capital depreciates completely every period. The initial level of capital is given by k0.
The capital stock has to be non-negative; consumption and investment, on the other hand, are
allowed to assume negative values (only for simplicity).

a) Draw the production function.

b) Provide a Bellman equation for the problem solved by a benevolent social planner.

c) Determine the steady-state level of capital.
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d) Find the optimal law of motion for capital. Hint: compare the utility of consuming one
unit of output now versus investing and consuming tomorrow. Distinguish the cases k < k
and k ≥ k.

e) Find the value function. Hint: No value function iteration etc. required – use your infor-
mation on the optimal law of motion and compute the utility directly.

9.3 Neoclassical Growth Model with Vintage Capital

Consider an economy with a mass one of identical consumers whose preferences are defined
by the utility function

+∞∑

t=0

βt ln (ct) ,

in which ct is consumption, and the parameter β ∈ (0, 1). Each consumer inelastically sup-
plies one unit of labor. The production sector of the economy is subject exogenous produc-
tivity change. However, technical change is of the embodies kind such that a specific capital
investment has been made to profit from any productivity increase. The frontier productivity
At grows at the exogenous rate γ

At+1 = (1 + γ)At.

Capital that is first used at time t uses the frontier technology of time t; future productivity
increases do not affect output derived from this capital. Capital can be used for two periods,
and then depreciates completely. Thus, at time t two capital vintages kt−1 and kt are in use, in
which the index denotes the time of first usage, and the two production functions used at time
t are

Y t−1
t = At−1kαt−1

(
Lt−1

t

)1−α
,

Y t
t = Atkαt

(
Lt

t
)1−α

.

Here Lt−1
t and Lt

t are the amounts of labor used with capital of vintage t−1 and t, respectively.
Labor can be allocated freely between the two vintages. The feasibility condition for the
goods market is

ct + kt+1 = Y t−1
t + Y t

t .

a) Formulate the optimization problem solved by a benevolent social planner in this econ-
omy.
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b) Derive the first order conditions, and for given level of capital, derive the optimal alloca-
tion of labor across the different vintages. What is the balanced growth rate of the economy?
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Appendix

A Useful Results of Mathematics

A.1 Envelope Theorem

Theorem A.1 Suppose that value function m(a) is defined as following:

m(a) = max
x

f (x(a), a).

Then the total derivative of m(a) with respect to a equals the partial derivative of f (x(a), a)
with respect to a, if f (x(a), a) is evaluated at x = x(a) that maximizes f (x(a), a), i.e.
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dm(a)
da

=
∂ f (x(a), a)

∂a

∣∣∣∣∣
x=x(a)

.

Proof Since m(a) is maximized value of f (x(a), a) at x = x(a), then

∂ f (x(a), a)
∂x

= 0

by the first order condition. Therefore the total derivative of m(a) with respect to a is

dm(a)
da

=
∂ f (x(a), a)

∂x
dx(a)

da
+
∂ f (x(a), a)

∂a

=
∂ f (x(a), a)

∂a

since the first term is equal to 0. 2

A.2 The Theoretical Foundation of Dynamic Programming: Some Serious Mathematical
Concerns

Although using the method dynamic programming seems not too hard, we never thought
about two fundamental questions concerning the prototype problem like (1):

(1) Does the solution exist at all?
(2) If yes, is it unique?

Answering these two questions needs some knowledge of functional analysis. Here are some
brief results as following.

Definition A metric space (S , ρ) is a non-empty set S and a metric, or distance ρ : S×S → R,
which is defined as a mapping, ∀x, y, v, with

(1) ρ(x, y) = 0⇔ x = y,
(2) ρ(x, y) = ρ(x, y), and
(3) ρ(x, y) ≤ ρ(x, v) + ρ(v, y).

For example, a plane
(
R2, d2

)
is a metric space, in which the metric d2 : R2 × R2 → R is

defined as

d2(x, y) = ||x − y||2 =

√
(x1 − y1)2 + (x2 − y2)2,∀x, y ∈ R2,

i.e. d2(·), or || · ||2, is just the Euclidean distance.

Definition A norm is a mapping Rn 3 x 7→ ||x|| ∈ R on Rn , with
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(1) ∀x ∈ Rn, ||x|| = 0⇔ x = 0,
(2) ∀x ∈ Rn, ∀α ∈ R, ||αx|| = |α|||x|| and
(3) ∀x, y ∈ Rn,||x + y|| ≤ ||x|| + ||y||.

In the definition of metric space, the set S is just arbitrary. It can be a subset of n dimensional
space, i.e. S ⊆ Rn, but it can also be a function space B(X) — a set containing all (normally,
bounded) functions mapping a set X to R, B : X → R. Then we define a supremum norm on
such function space

d∞ = || f − g||∞ = sup
x∈X
| f (x) − g(x)|,∀ f , g ∈ B(X),

and this metric space of bounded functions on X with supremum norm is denoted by (B(X), d∞).

Having defined all the necessary jargons, we continue with a special mapping.

Definition Suppose a metric space (S , ρ) and a function T : S → S mapping S to itself. T is
a contraction mapping with modulus β, if ∃β ∈ (0, 1), ρ(T x,Ty) ≤ βρ(x, y), ∀x, y ∈ S .

x y

Tx

Ty T

0 1

1

v

Fig. A.1. C M

An example in F A.1 shows a contraction mapping T : (0, 1) → (0, 1). The distance
between images T x and Ty is less than |y − x|. One may notice that under a contraction
mapping like this, a fixed point v ∈ S = (0, 1) exists such that Tv = v. Indeed, the following
theorem tells us that this is a general phenomenon.
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Theorem A.2 (Contraction Mapping Theorem) If (S , ρ) is a complete metric space and T :
S → S is a contraciton mapping with modulus β, then

(1) T has a unique fixed point v ∈ S , and
(2) ∀v0 ∈ S , ρ (T nv0, v) ≤ βnρ (v0, v), n ∈ N.

T n means that the mapping is applied for n times. But what does the Theorem imply for our
questions on dynamic programming? Well, look at the prototype problem

V(kt) = max
ct,kt+1
{u(ct) + βV(kt+1)} . (A.1)

The right hand side is just a mapping of function V(·), mapping the function space to itself.
And the equilibrium solution making V = TV is simply a fixed point of the mapping! Now
the Contraction Mapping Theorem tells us that a unique fixed point exists if the mapping is
a contraction mapping, therefore, if we want to say that there is a unique solution for the
prototype problem, we have to make sure that the mapping in (A.1) is a contraction mapping.

However, showing a mapping to be a contraction one directly by definition is usually tricky.
Fortunately, the following theorem makes the task more tractable.

Theorem A.3 (Blackwell’s sufficient conditions for a contraction) Suppose X ⊆ Rn and B(X)
is the function space for all bounded functions f : X → R with supremum norm || · ||∞. If a
mapping T : B(X)→ B(X) satisfies

(1) (Monotonicity condition) ∀ f , g ∈ B(X) and ∀x ∈ X with f (x) ≤ g(x) implies (T f )(x) ≤
(Tg)(x), ∀x ∈ X;

(2) (Discounting condition) ∃β ∈ (0, 1) such that
[
T ( f + a)

]
(x) = f (x) + a ≤ (T f )(x) + βa,∀ f ∈ B(X), a ≥ 0, x ∈ X,

then T is a contraction mapping with modulus β.

Now we can show that our prototype problem of dynamic programming satisfies Blackwell’s
sufficient conditions for a contraction, therefore there exists a unique fixed point for the map-
ping. Suppose that we are going to solve the following dynamic optimization problem with
exact utility and production functions,

V(k) = max
k′

{
c1−θ

1 − θ + βV(k′)
}

= max
k′

{
[Akα + (1 − δ)k − k′]1−θ

1 − θ + βV(k′)
}

s.t. c + k′ = Akα + (1 − δ)k,

in which we write k and k′ instead of kt and kt+1 for simplicity, and the right hand side defines
the mapping T . Since k takes its maximum value when c = 0, k is thus bounded above by k
such that
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0 + k = Ak
α

+ (1 − δ)k,

k =

(A
δ

) 1
1−α
.

Therefore define the state space X ⊆
[
0, k

]
as a complete subspace ofR, and B(X) the function

space of all bounded continuous functions on X with supremum norm. Then we need to show
that the mapping T : B(X) → B(X) in the complete (why?) metric space (B(X), d∞) satisfies
Blackwell’s sufficient conditions for a contraction.

Check the monotonicity condition. Let f (x) ≤ g(x), ∀x ∈ X, then

T f (k) = max
k′

{
[Akα + (1 − δ)k − k′]1−θ

1 − θ + β f (k′)
}

≤max
k′

{
[Akα + (1 − δ)k − k′]1−θ

1 − θ + β
[
f (k′) + g(k′) − f (k′)

]}

= max
k′

{
[Akα + (1 − δ)k − k′]1−θ

1 − θ + βg(k′)
}

= Tg(k).

Check the discounting condition.

[
T ( f + a)

]
(k) = max

k′

{
[Akα + (1 − δ)k − k′]1−θ

1 − θ + β f (k′) + βa
}

= T f (k) + βa.

Both conditions hold. Therefore the dynamic optimization problem has a unique equilibrium
solution.

B Numerical Solution Using MATLAB

We start this section from a simple example. Consider the following social planner’s problem:

max
{ct,kt}+∞t=0

∗∞∑

t=0

βt ln ct

s.t. kt+1 = Akαt − ct − δkt.

One can easily write down its Bellman equation as following:
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V(k) = max
k′
{ln c + βV(k′)}

s.t. c + k′ = Akα + (1 − δ)k,

in which we write k and k′ instead of kt and kt+1 for simplicity. You can solve for the Euler
equation, which gives

1
c

= β
1
c′

[
Aαk′α−1 + (1 − δ)

]
.

In steady state c = c′, and we insert the values for the other parameters, β = 0.6, A = 20,
α = 0.3, and δ = 0.5, then the steady state level of capital stock k∗ is around 10.38.

Also note that the highest value that k can achieve in the steady state is under c = 0, i.e.
0 + k = Ak

α
+ (1 − δ)k. k is approximately 12, therefore we take 12 as the upper bound of k

in the program.
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Fig. B.1. P  V F

To make the computer work for you we borrow the idea of S 4.2.2. Suppose that we
start from the end of the world such that V(k′) = 0 for any value k′, then by backward
induction we can compute the value function V(k) for one period backward. If we repeat
the same procedure for sufficiently many rounds V(k) would eventually converge to the true
value function, i.e. the distance between V(k)s in two successive repeats converges to zero.
To make the programming easier, in practice people simply feed the discrete, rather than
continuous values of k to computer (incr=0.01 in this example) and let the machine do the
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tedious computation of V(k) for each value of k. F B.1 shows the final result of V(k),
and F B.2 plot each k′ for its corresponding k. Steady state is obtained where k = k′,
which is around 10.38 as we calculated. Finally, to make it interesting, F B.3 captures
the complete process of convergence.
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Fig. B.2. F  S S

The source code(tested in MATLAB R2007a as well as GNU Octave 2.9.13, on the platforms
of Microsoft Windows Vista and XP):

% iterate.m

% Simple example of value function iteration

clear all;

% Parameter values

beta=0.6;

A=20;

alpha=0.3;

delta=0.5;

% Technical parameters

incr=0.01; % Increment in the capital grid

maxk=12; % Maximum value for capital

maxcrit=10 ˆ(-5); % Converge criterion

% Setting up the capital grid

kgrid=[incr:incr:maxk];
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Fig. B.3. T C P

n=length(kgrid);

% Possible consumption values depending on k and k’; this is an n-by-n matrix

% Each column is different k, each row is different k’

cons=ones(n,1)*((1-delta)*kgrid+A*kgrid.ˆalpha)-kgrid’*ones(1,n);

% Throwing out negative values and taking logs to get period utilities

util=log(max(cons,0.00001*ones(n,n)));

% The initial guess for the value function

v=zeros(1,n);

% crit is the test function

crit=1;

while crit>maxcrit;

% The actual maximization step; g stores the optimizing index

[vnew g]=max(util+beta*v’*ones(1,n));

crit=max(abs(v-vnew));

v=vnew;

end;

% Plotting Figures

figure;

pl=plot(kgrid,v);

hold on;

set(pl,’LineWidth’,2);

xlabel(’Capital’);

ylabel(’Utility’);
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title(’Value Function’);

hold off;

figure;

plot(kgrid,[kgrid; incr*g]);

hold on;

set(pl,’LineWidth’,2);

xlabel(’Capital Today’);

ylabel(’Capital Tomorrow’);

title(’Policy Function’);

hold off;
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