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Here and There

Sometimes one’s city can look like an alient place. Streets that seem like home

will suddenly change colour; I’ll look into the ever mysterious crowds pressing

past me and suddenly think they’ve been there for hundreds of years. With its

muddy parks and desolate open spaces, its electricity poles and the billboards

plastered over its squares and its concrete monstrosities, this city, like my soul, is

fast becoming an empty – a very empty – place.

—Orhan Pamuk (2005), Istanbul: Memories and the City
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1 Introduction

In this class we examine a couple of topics of growth modelling, each of which is not big
enough to fill up a single chapter.

The first two sections discuss several issues concerning the Ramsey-Cass-Koopmans model,
which readers may feel eager to know but are hardly able to find in the textbooks. One is
how people should interpret the equivalence in the results obtained from two different ap-
proaches, i.e. to solve Ramsey-Cass-Koopmans model as a central planning problem or by
finding competitive equilibrium allocations. We show that in special cases the two results do
replicate each other, however, for most of the times one has to keep in mind whose decision
the policy affects and it would be safe to “render to the Caesar the things that are Caesar’s
and to God the things that are God’s”without mixing up these two approaches.

The other is analysing the economy’s qualitative response to the policy change using phase di-
agram. Although the business of macro study has been dominated by the quantitative (numer-
ical) methods, it definitely makes sense to think qualitatively before going with the numbers.
As we can see, qualitative method provides faster (and often sufficiently precise) predictions,
and people may use it to check whether they got everything correct in numerical simulations.

The last topic is a portrait of the overlapping generation model. It shows how a relatively
generic model (with production and capital accumulation) is established and how people may
proceed with it. However, from a pragmatic point of view, this section is more than enough
for solving our exercises. Therefore, this part is more for your fun.

2 Ramsey-Cass-Koopmans Model: Centralized and Decentralized Versions

One can think about Ramsey-Cass-Koopmans problem in two different ways, (1) character-
izing the maximizing behavior of an economy composed of distinct individual households,
(2) finding the solution of a benevolent social planner who wants to maximize the social wel-
fare. In this section, we will show that for standard Ramsey-Cass-Koopmans problem these
two approaches result in the same solutions. However, such equivalence is more like a coin-
cidence, and it’s not always true that the solution from one approach replicates the solution
from the other under the settings different from the standard problem.

2.1 The Central Planning Problem

Consider a central planning economy with neoclassical technology Y(t) = F(K(t), L(t)) (no
technological progress), constant depreciation rate δ and constant population growth rate n.
Then the standard textbook problem of a benevolent social planner is simply maximizing the
utility of an infinitely lived representative agent,
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max
c(t)

+∞∫

0

e−ρtu(c(t))dt, (1)

given the flow budget constraint

k̇(t) = f (k(t)) − (n + δ)k(t) − c(t). (2)

2.2 Decentralized Ramsey-Cass-Koopmans Model

Consider the problem of an individual infinitely living consumer who has some predeter-
mined set of expectations for how the aggregate interest rate r(t) and wage rate w(t) will
evolve. The consumer’s object function is the same as (1). The household which she belongs
to owns some assets A(t), and can in principle also borrow (which can be expressed as a
negative component of A(t)). The household’s total net asset position at time t is therefore

Ȧ(t) = w(t)L(t) + r(t)A(t) −C(t) (3)

in which L(t) is the amount of labor force (as well as population, because we assume that
there’s no unemployment) provided by the household, and C(t) is the aggregate consumption
level of the household. If we express the net asset position in per capita form with a(t) =

A(t)
L(t)

and c(t) =
C(t)
L(t) , hence ȧ(t)

a(t) =
Ȧ(t)
A(t)− L̇(t)

L(t) by log-linearization, then equation (3) can be transformed
into

ȧ(t) = w(t) + r(t)a(t) − na(t) − c(t). (4)

There are also competitive firms in this economy who want to maximize their profits. As
explored in the first chapter of the class notes, the market prices for the labor and capital are

w(t) = f (k(t)) − k(t) f ′(k(t)) (5)
r(t) + δ = f ′(k(t)) (6)

respectively. And furthermore the consumer is representative in the sense that she does not
only represent the consumers but also represents the entrepreneurs, therefore

a(t) = k(t) (7)

from both sides view. Insert (5), (6) and (7) into (4), one can see that

k̇(t) = f (k(t)) − (n + δ)k(t) − c(t), (8)
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which is exactly the same as (2)!

2.3 Beyond the Equivalence

Now one can see that both the social planner in a central planning economy and a representa-
tive consumer in a decentralized competitive economy face the same object function (1) and
the same flow buget constraint, therefore there is no doubt that one can get the same solution
following either approach.

Can we say anything more than such equivalence? Obviously from theoretical point of view
this shows that market can work as well as benevolent social planners, so that we don’t need
people sitting in Moscow and planning for us. From practical point of view, it’s much simpler
to set up a social planner’s problem than its decentralized version — Suppose that such equiv-
alence could be justified, then one can solve a decentralized Ramsey-Cass-Koopmans model
by starting from a social planner’s problem without bothering to explore the sophisticated
flow budget constraint which a representative consumer is facing in a decentralized economy.

The answer to this question is, yes, but unfortunately, quite restricted.

From the first look, one may be tempted to feel that there might be something to do with the
Theorems of Welfare Economics and would wonder whether we can say anything with the
Theorems. Sure, here for the current settings the decentralied economy is featured by a com-
petitive (Walrasian) equilibrium, and the allocation proposed by the social planner is Pareto
optimal. The First Theorem of Welfare Economics tells us that if the equilibrium is Wal-
rasian, then the allocation is Pareto optimal (which sounds that the decentralized equilibrium
allocation may coincide the social planner’s solution); and the Second Theorem of Welfare
Economics tells us that if an allocation is Pareto optimal (in which each agent holds a positive
amount of each good, and the preferences are convex, continuous and monotonic), then such
allocation is a Walrasian equilibrium given some initial endowments (which sounds that the
social planner’s solution can be replicated by a competitive equilibrium).

Then why can’t we say that these two approaches are equivalent? Alas, the Theorems of
Welfare Economics (at least as in Mas-Colell et al.) assume that the commodity space is
finite, however, our infinitely living agent is maximizing a sequence of {ct}+∞t=0 — suggesting
that the commodity space here is infinite. Therefore, under the settings different from standard
Ramsey, such infinite commodity space may bring us new troubles and the Theorems are
likely to fail (one can have a look at the proofs of the Theorems and think why this happens).

So one has to be careful when the settings of the problems at hand deviate from the standard
ones, and think it over how the parameters affect the decisions (i.e. through individual’s op-
timal behavior, or central planning). Basically, whenever the household’s budget constraint
or utility function differs in the right ways from the social budget constraint or the central
planner’s preferences, there can be a divergence between the solutions of the two approaches.
Just name a few occasions:
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• There are externalities in the behavior of individual households (e.g. our exercise attached
to the class of dynamic programming);

• There are idiosyncratic risks among the consumers but no aggregate risks for the economy
as a whole;

• There are distortionary taxes (e.g. Problem 2 from Problem Set 2);
• The consumers have different time horizons from the central planner’s. For example, when

the representative consumer has a finite life span while the central planner is eternal (e.g.
Problem 5 and 6 from Problem Set 2), or the central planner has a generally short tenure
in her office as in some political economic models

and so on.

3 Nothing But a Jump

As we have already seen before, phase diagram provides us a very powerful tool for charater-
izing the convergence path. Moreover, it is also a very useful method to analyse the economy’s
qualitative response to the policy change.

Since the decisions on the control variables, hence the change of stock variables, are nor-
mally made by the forward-looking agents (sometimes people call “agents with rational ex-
pectations”, or “agents with perfect foresight”, etc.), it’s important in the first place to specify
whether the change is expected or unexpected. The reason is pretty intuitive: If a policy
change is expected, the agent may modify her behavior before the change actually takes
place. In the section that follows, we show how agents respond to unexpected / expected
policy changes in a purely qualitative way. In addition, to make our arguments simpler (and
without loss of generality) from now on we assume that the economy is already on the bal-
anced growth path (i.e. steady state) when the (prospective) policy change is known, and the
policy change will sustain permenantly (or at least for a sufficiently long time into the future)
after it realizes.

3.1 Unexpected Policy Change

If a policy change is unexpected, then the system dynamics change immediately when the new
policy comes in, i.e. the phase diagram (hence the corresponding saddle path) may change
under the new system parameters. Suppose that the agent still stays in the old steady state, she
would end up with disaster (i.e. hitting the “walls”) under the new system dynamics. To avoid
this, the only thing she can do at this time is to jump (via adjusting the control variables) onto
the new saddle path which leads her to the new steady state.

To make it visible, an example is given as following: the settings are taken from Problem 1
of Problem Set 2, and we introduce an unexpected increase in depreciation rate δ.
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Fig. 1. A U I  δ

The transition process is shown in F 1. The phase diagram under the old parameters is
plotted in black lines, and the phase diagram under the new parameters is plotted in red lines.
Now when the policy comes in, the old steady state (black E) is off the new saddle path. If the
agent still stays here she would end up hitting k-axis in finite time, driven by the new system
dynamics. This would violate the transversality condition, and a rational agent should avoid
such a disaster and must arrive at the new saddle path when the policy realizes. Remember
that k, as a state variable, cannot change discontinuously, therefore the only thing that the
agent can do is to make an immediate change in c — A jump in c dimension as the blue
arrow shows, and then converge to the new steady state (red E).

F 2 and 3 plot the results from a numerical simulation 1 . To make the computation
simpler, we express the instantaneous utility function as u(t) = 1

β
c(t)β and let β → 0 (this

gives us a log-utility function). The initial values for the parameters are

α= 0.3,
n = 0,
δ= 0.03,
ρ= 0.05.

And the old stead state is

c∗ = 1.5638,

1 Since the computer is not able to deal with continuous functions, we discretize the time horizon into
many periods.
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Fig. 2. T T P  C

k∗ = 6.6076.

Now an unexpected policy is introduced such that δ becomes 20% higher. F 2 and 3
show how c and k evolve after the policy shock, which are exactly the same as we predicted
in F 1.
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Fig. 3. T T P  C S

Then people may wonder why the agent has to change c, the consumption level, immediately
after the policy is known. Could it be justified that c is changed some time later? Suppose
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that there is an alternative scheme, as shown in F 4: When the policy is known at t0, the
agent still stays at the old steady state (black c∗). After some time, at t1 the agent jumps onto
the new saddle path and then moves towards the new steady state (red c∗) 2 . Could the agent
be better off if she follows such a scheme?

The answer is no. We prove this by contradiction.
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Fig. 4. A A C S

Suppose that such scheme is an optimal consumption path for the agent, in which the con-
sumption level jumps from c1 to c2 at time t1. Then we take a sufficiently small dt neighbor-
hood around t1, and the agent’s utility gain in [t1 − dt, t1 + dt] can be expressed as

u(t1 − dt, t1 + dt) = u(c1)dt + u(c2)dt.

Now we take the average c = c1+c2
2 . Then given that u(·) is strictly concave, by Jensen’s

inequality

u(c1) + u(c2)
2

dt< u
(c1 + c2

2

)
dt,

u(c1)dt + u(c2)dt< u (c) (2dt),
u(t1 − dt, t1 + dt)< u (c) (2dt).

2 Note that she cannot really stick to black c∗ after t0 — The new system dynamics will drive c
downwards.
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This means that if the consumption level jumps from c1 to c2 at time t1 one can always find a
better scheme with a constant c in [t1 − dt, t1 + dt], yielding higher utility for the agent. But
this contradicts the assumption that it’s optimal for the agent to jump from c1 to c2 at time
t1. Therefore, any consumption path containing a jump (or jumps) after t0 cannot be optimal.
Reversely speaking, the optimal consumption path only allows a jump when the policy is
known (i.e. at t0) — the only time point that the agent is not able to smooth her consumption
levels before and after t0.

3.2 Expected Policy Change
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Fig. 5. A F I  n

It would be tricky if the policy change is expected, because the agent with perfect foresight
may find it optimal to smooth her decisions before the change realizes. To make such situation
clear, think about the question in Problem 6 from Problem Set 1: At t0 news comes that the
growth rate in labor supply will increase permenantly after t1.

F 5 shows the phase diagrams under old (lines in black) and new (lines in red) parame-
ters. Obviously the agent will end up at the new steady state, but the question is: How?

Here is the qualitative reasoning:

• Surely the agent cannot jump directly from the old steady state (black E) to the new one
(red E), because k cannot change discontinuously;

• Then at t1 the agent should be somewhere along the saddle path, then move towards the
new steady state. If she is not on the saddle path at t1, as we argued before, she would end
up with disaster;
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• Then the agent should move to reach the new saddle path during [t0, t1]. As we proved
several paragraphs before, if the agent is behaving optimally, no jump (i.e. a discontinuous
change in c, for simplicity) is allowed after t0. What’s more, if the agent wants to jump,
then t0 is the only chance;

• Should she jump at t0? Yes, otherwise she would not move before t1 at all.

0 50 100 150 200 250 300 350
1.1

1.15

1.2

1.25

1.3

1.35

Plot of c 

Periods

Fig. 6. T T P  C  P F

The transition process is summerized in F 5. When the news comes at t0 the agent jumps
off from the old steady state. But for any time before t1 the system is still governed by the old
dynamics, therefore the growth path is driven in the northwestern direction. When the policy
finally realizes at t1 the growth path will exactly hit the new saddle path, leading the agent
towards the new steady state.

Again, we visualize the process via a numerical simulation. The parameters are similar as
before except that the growth rate of labor supply is positive

α = 0.3,
β→ 0,
n = 0.03,
δ = 0.03,
ρ = 0.05.

And the old stead state is

c∗ = 1.2857,
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k∗ = 4.1925.

0 10 20 30
1.28

1.29

1.3

1.31

1.32

1.33

Fig. 7. T T P  C B T S R  P F

Now news comes at t0 = 0 that n doubles permanently from t1 = 10 onwards. F 6 shows
how c evolves after t0, and F 7 shows the details how c changes before t1.
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Fig. 8. T T P  C S  P F

F 8 shows that k decreases all the way, but there is a turning point at t1 because its growth
rate changes due to the change in c. Both figures suggest that we predict a right pattern via
F 5.
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4 Overlapping Generation Model

Now we come to the overlapping generation model, which is another major modelling frame-
work in macroeconomic studies. The key difference between the overlapping generation
model and the Ramsey-Cass-Koopmans model is that there is a built-in imperfection: rather
than there being a fixed number of infinitely living households, in overlapping generation
models new individuals are continually being born and old ones are continually dying. The
direct implication of this assumption is that the social planner’s planning horizon may dif-
fer from the representative agent’s life span. And we will see this leads to many interesting
results.

4.1 Basic Settings

To make it generic we maintain the same two sectors, households and firms, as we did in
Ramsey problem. With turnover in the population, it is simpler to assume that the time is
discrete from now on.

4.1.1 Households

Each person in this economy lives for two periods. The group that is born at t is called
generation t, and during period t the young (generation t) overlaps with the old (generation
t − 1). The population of generation t is Lt, and L grows at a constant rate n overtime, i.e.
Lt = (1 + n)Lt−1. In each period only two generations are alive. One representative agent’s
activities in each period:

• First period: working for earning a wage wt, consuming cy
t , saving st;

• Second period: retiring, and consuming co
t+1 from the return of the savings (1 + rt+1)st.

Each person at t gains utility from young and old-age consumption according to

ut = u
(
cy

t , c
o
t+1

)
,

in which the utility function has all the properties we assumed in the first chapter of the class
notes.

Then in this economy a representative agent’s problem can be expressed as

max
cy

t ,c
o
t+1

ut = u
(
cy

t , c
o
t+1

)
,

s.t. cy
t + st ≤ wt,

co
t+1 ≤ (1 + rt+1)st.
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In optimum the two inequality constraints must be binding, and they can be merged into one

co
t+1 = (1 + rt+1)(wt − cy

t ).

Set up Lagrangian

L = u
(
cy

t , c
o
t+1

)
+ λ

[
(1 + rt+1)(wt − cy

t ) − co
t+1

]
.

First order conditions are

∂L

∂cy
t

=
∂u

(
cy

t , c
o
t+1

)

∂cy
t

− λ(1 + rt+1) = 0,

∂L

∂co
t+1

=
∂u

(
cy

t , c
o
t+1

)

∂co
t+1

− λ = 0.

Eliminate λ and get the Euler equation

−
∂u

(
cy

t , c
o
t+1

)

∂cy
t

+ (1 + rt+1)
∂u

(
cy

t , c
o
t+1

)

∂co
t+1

= 0, (9)

meaning that the marginal utility from consumption today must equal marginal utility tomor-
row, corrected by the interest rate. If we insert the budget constraints into it, we can define a
function relating the saving rate to the wage income and the interest rate

st = s(wt, rt+1). (10)

To see the impacts of wt and rt+1 on st, first we differentiate the implicit function (9) with
respect to wt


∂2u

(
cy

t , c
o
t+1

)

∂
(
cy

t
)2

∂cy
t

∂wt
+
∂2u

(
cy

t , c
o
t+1

)

∂cy
t∂co

t+1

∂co
t+1

∂st

∂st

∂wt



= (1 + rt+1)


∂2u

(
cy

t , c
o
t+1

)

∂co
t+1∂cy

t

∂cy
t

∂wt
+
∂2u

(
cy

t , c
o
t+1

)

∂
(
co

t+1

)2

∂co
t+1

∂st

∂st

∂wt

 .

From budget constraints one can see that

∂cy
t

∂wt
= 1 − ∂st

∂wt
,
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∂co
t+1

∂st
= 1 + rt+1.

Combine these two with the last equation, one can see that

∂st

∂wt
=

∂2u(cy
t ,c

o
t+1)

∂(cy
t )2 − (1 + rt+1)∂

2u(cy
t ,c

o
t+1)

∂co
t+1∂cy

t

(1 + rt+1)2 ∂
2u(cy

t ,c
o
t+1)

∂(co
t+1)

2 − 2(1 + rt+1)∂
2u(cy

t ,c
o
t+1)

∂cy
t ∂co

t+1
+

∂2u(cy
t ,c

o
t+1)

∂(cy
t )2

.

Then differentiate the implicit function (9) with respect to rt+1


∂2u

(
cy

t , c
o
t+1

)

∂
(
cy

t
)2

∂cy
t

∂st

∂st

∂rt+1
+
∂2u

(
cy

t , c
o
t+1

)

∂cy
t∂co

t+1

(
st + (1 + rt+1)

∂st

∂rt+1

)

= (1 + rt+1)


∂2u

(
cy

t , c
o
t+1

)

∂co
t+1∂cy

t

∂cy
t

∂st

∂st

∂rt+1
+
∂2u

(
cy

t , c
o
t+1

)

∂
(
co

t+1

)2

·
(
st + (1 + rt+1)

∂st

∂rt+1

)]
+
∂u

(
cy

t , c
o
t+1

)

∂co
t+1

.

From budget constraints one can see that

∂cy
t

∂st
= −1,

insert this into the last equation and we get

∂st

∂rt+1
=

st
∂2u(cy

t ,c
o
t+1)

∂cy
t ∂co

t+1
− ∂u(cy

t ,c
o
t+1)

∂co
t+1

− st(1 + rt+1)∂
2u(cy

t ,c
o
t+1)

∂(co
t+1)

2

(1 + rt+1)2 ∂
2u(cy

t ,c
o
t+1)

∂(co
t+1)

2 − 2(1 + rt+1)∂
2u(cy

t ,c
o
t+1)

∂cy
t ∂co

t+1
+

∂2u(cy
t ,c

o
t+1)

∂(cy
t )2

.

Now we try to determine the signs of ∂st
∂wt

and ∂st
∂rt+1

. Known from the strict concavity of the
utility function that

∂2u
(
cy

t , c
o
t+1

)

∂
(
cy

t
)2 < 0,

∂2u
(
cy

t , c
o
t+1

)

∂
(
co

t+1

)2 < 0,
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and from the normality of the utility function that

∂2u
(
cy

t , c
o
t+1

)

∂cy
t∂co

t+1

≥ 0,

the denominator of ∂st
∂wt

shows that

Dt = (1 + rt+1)2
∂2u

(
cy

t , c
o
t+1

)

∂
(
co

t+1

)2 − 2(1 + rt+1)
∂2u

(
cy

t , c
o
t+1

)

∂cy
t∂co

t+1

+
∂2u

(
cy

t , c
o
t+1

)

∂
(
cy

t
)2 < 0,

and the numerator implies that

∂2u
(
cy

t , c
o
t+1

)

∂
(
cy

t
)2 − (1 + rt+1)

∂2u
(
cy

t , c
o
t+1

)

∂co
t+1∂cy

t
< 0.

And then we can see that

∂st

∂wt
> 0

implying that the income effect dominates.

However, the joint effects of substitution and income effects leave the sign of ∂st
∂rt+1

undeter-
mined.

4.1.2 Production

Firms have the typical neo-classical production function (suppose that there is no technolog-
ical progress)

Yt = F (Kt, Lt) .

Write in per-capita form

yt = f (kt) ,

in which yt = Yt
Lt

and kt = Kt
Lt

.

Firms are competitive such that

15



r(kt) = f ′ (kt) − δ, (11)
w(kt) = f (kt) − kt f ′ (kt) , (12)

which we have seen many times.

4.2 Equilibrium

In the next step we put the two sectors together and see how the allocation looks like in the
equilibrium.

4.2.1 Equilibrium Conditions

The equilibrium can be characterized as a sequence of decisions {cy
t , c

o
t , st, rt,wt,Kt+1, Lt,Yt}+∞t=0 ,

such that the following conditions have to hold:

• Utility maximization by households, characterized by (9) or (10);
• Profit maximization by firms, characterized by (11) and (12);
• Market clearing
· From the side of households

Kt+1 − Kt = wtLt + rtKt − cy
t Lt − co

t−1Lt−1

= wtLt + rtKt − (wt − st)Lt − (1 + rt)st−1Lt−1,

Kt+1 = stLt + (1 + rt)(Kt − st−1Lt−1).

Suppose that we start from t = 1 with initial capital stock K1 owned by population L0

who are old (i.e. generation 0) in this period. These people consume co
1L0 = (1 + r1)K1.

Apply this to the equation above and get

K2 = s1L1 + (1 + r1)K1 − (1 + r1)s0L0

= s1L1 + co
1L0 − (1 + r1)s0L0︸                  ︷︷                  ︸

=0

= s1L1,

in which co
1L0 − (1 + r1)s0L0 = 0 comes from the budget constraint. Apply this result to

the expression of Kt+1 and we find that

Kt+1 = stLt,∀t ≥ 1.

Rewrite it in per capita form

kt+1Lt+1 = stLt

st = (1 + n)kt+1.

Using (11) and (12) we can capture all the conditions in a reduced form
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st [w(kt), r(kt+1)] = (1 + n)kt+1. (13)

· From the side of firms

Kt+1 − Kt = F(Kt, Lt) − cy
t Lt − co

t Lt−1 − δKt, (14)

rearrange to get

Kt+1 = Kt + (rt + δ)Kt + wtLt − cy
t Lt − co

t Lt−1 − δKt,

Kt+1 = stLt + (1 + rt)Kt − co
t Lt−1.

Then it’s trivial to get the same result

st [w(kt), r(kt+1)] = (1 + n)kt+1

using the fact that co
t = (1 + rt)st−1.

4.2.2 Steady State

From (13) the equilibrium path is totally determined by kt and kt+1. The steady state is defined
such that the capital intensity is constant over time, i.e. kt = kt+1 = k∗. Therefore the steady
state value k∗ can be solved by setting

s [w(k∗), r(k∗)] = (1 + n)k∗. (15)

4.3 Example

Suppose that the representative agent’s utility function takes the form

u
(
cy

t , c
o
t+1

)
= ln cy

t + β ln co
t+1, β ∈ (0, 1),

and the firms take Cobb-Douglas technology F(Kt, Lt) = Kα
t L1−α

t . You may find that

• st is independent on rt+1, i.e. st = s[w(kt)];
• The wage rate is a constant fraction of aggregate output, i.e. wt = (1 − α)yt;
• The system dynamics are captured by

kt+1 =
β

1 + β

1 − α
1 + n

kαt , (16)

and it’s easily seen from F 9 that the curve kt+1 = φ (kt) from (16) has a single cross
with 45 degree line, meaning that there exists a unique steady state in which kt+1 = kt = k∗

and 0 < k∗ < +∞. The system dynamics are also depicted for two arbitrary initial values;

17



• The corresponding steady state capital intensity is

k∗ =

(
β

1 + β

1 − α
1 + n

) 1
1−α
.
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Fig. 9. T S S

4.4 Discussions

Albeit many differences in the settings, the overlapping generation model so far generated
quite similar convergence as Solow-Swan model. However, the differences in settings do
have profound impacts on the outcomes, and the seemingly similar results may imply totally
different notions.

4.4.1 The Steady State

Remember that in Solow-Swan model the unique, non-trivial (i.e. k∗ , 0) steady state is
ensured by the single cross between the scaled neoclassical production function s f

(
k̂
)

and
(n + δ + g)k̂ line. Does the same principle apply for seeking the steady state of overlapping
generation models, as in F 9?

In general, the relation kt+1 = φ (kt) is pinned down by (13), which is an implicit, non-linear
function of kt and kt+1. Without knowing exact forms of utility function and production func-
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tion, we have almost no idea about the properties of this implicit function. Therefore, we must
carefully examine the existence and uniqueness of the steady state!

However, it would be quite difficult to get any definite result directly from equation (13).
Therefore, we start from an alternative approach, by analyzing w (kt) function.

Notice that ∀t the budget constraint for the young generation, cy
t + st ≤ wt, has to hold. Given

that cy
t ≥ 0, st ≤ wt. Combining with equation (13), one can get (1 + n)kt+1 ≤ w (kt), i.e.

kt+1 ≤ w(kt)
1+n . Plot w(kt)

1+n curve as F 10, and kt+1 = st
1+n curve should be no higher since

st ≤ wt (kt). However, if w(kt)
1+n ≤ kt, ∀kt as in F 10, the trivial outcome k∗ = 0 is the only

steady state.
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Fig. 10. T T S S

To exlude such case, we have to impose more restrictions. From F 11, one can see that
to ensure the existence of a non-trivial steady state, such that kt+1 = st

1+n curve has a cross
with 45 degree line at k∗ > 0 as curve A shows, the slope of w(kt)

1+n must exceeds 1 at kt → 0.
However, the vice versa isn’t true because the case kt+1 = st

1+n ≤ kt, ∀kt may still exist even if
limkt→0

1
1+n

dw(kt)
dkt

> 1 holds, as curve B. Therefore, with w (kt) being defined by (12), one can
easily find the necessary condition for the existence of a non-trivial steady state.

Proposition 4.1 In the overlapping generation model, there exists a non-trivial steady state
k∗ > 0, such that limt→+∞ kt = k∗, ∀k0 > 0 only if

lim
kt→0

[−kt f ′′ (kt)
]
> 1 + n.

Proof When limt→+∞ kt = k∗ > 0, ∀k0 > 0, then kt+1 > kt, ∀k0 ∈ (0, k∗). Therefore
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kt < kt+1 ≤ w (kt)
1 + n

=
f (kt) − kt f ′ (kt)

1 + n
,∀k0 ∈ (0, k∗) ,

1 + n<
f (kt) − kt f ′ (kt)

kt
.

Applying L’Hôpital’s Rule,

lim
kt→0

f (kt) − kt f ′ (kt)
kt

= lim
kt→0

[−kt f ′′ (kt)
]
> 1 + n.

2
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Fig. 11. T N-T S S: A N C

Notice the condition is more strict than the Inada conditions. That is, Inada conditions are no
longer sufficient to ensure non-trivial steady states in overlapping generation models.

P 4.1 only deals with the case in which a non-trivial steady state exists, however, we
have yet no idea whether the steady state is unique / stable. For example, F 12 presents
one case with multiple non-trivial steady states, two of which being global stable. Therefore,
if we want to see the neat, globally stable unique equilibrium such as in Solow-Swan model,
we simply have to impose more restrictions (and, unfortunately, we have to confront with the
implicit function in (13)). Some sufficient conditions are suggested in P 4.2.
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Fig. 12. M E (“P T”)

Proposition 4.2 In the overlapping generation model, there exists a unique, globally stable,
and non-trivial steady state ∀k0 > 0 if

(1)

lim
kt→0

φ′ (kt) =
− ∂st
∂wt

kt f ′′ (kt)

1 + n − ∂st
∂rt+1

f ′′ (kt+1)
> 1, in which kt+1 = φ (kt) ; (17)

(2)

lim
kt→+∞

f ′ (kt) = 0; (18)

(3)

φ′ (kt) ≥ 0,∀kt > 0; (19)

(4)

φ′′ (kt) < 0,∀kt > 0; (20)

(5)

∂st

∂rt+1
≥ 0,∀ (wt, rt+1) ≥ 0. (21)
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Proof (Sketch) Take total differentiation of equation (13),

∂st

∂w(kt)
dw(kt)

dkt
dkt +

∂st

∂r(kt+1)
dr(kt+1)

dkt+1
dkt+1 − (1 + n)dkt+1 = 0,

∂st

∂w(kt)
[
f ′ (kt) − f ′ (kt) − k f ′′ (kt)

]
dkt +

∂st

∂r(kt+1)
f ′′ (kt+1) dkt+1 − (1 + n)dkt+1 = 0,

solve to get

dkt+1

dkt
=

− ∂st
∂wt

kt f ′′ (kt)

1 + n − ∂st
∂rt+1

f ′′ (kt+1)
= φ′ (kt) ,

which is the φ′ (kt) part of condition (17).

Like curve A in F 11, it’s natural to see that the following requirements can ensure a
unique, globally stable, and non-trivial steady state k∗ > 0:

(a) φ (kt) is a single-valued function;
(b) The function φ (kt) is increasing and strictly concave in kt;
(c) limkt→0 φ

′ (kt) > 1;
(d) φ (kt) crosses 45 degree line at 0 < k∗ < +∞.

Condition (21) is sufficient for (a). Condition (17) is identical to (c), (19) plus (20) imply (b),
and (b) plus (18) imply (d) (notice that (18) implies that limkt→+∞ φ′ (kt) = 0). 2

Readers should keep in mind that our effort on working out the two propositions above,
guaranteeing certain types of neat steady states, doesn’t mean that the other “maverick”ones
are less interesting. In fact, the rich set of these “outliers”is of increasing importance for
economists to better understand the complex real world, for example, the poverty trap hidden
in F 12 (How if a developing country starts its economic growth from k0? See E

7.7), the sinuous growth path implied by the case in F 13, and even, chaos.

4.4.2 The Golden Rule

As emphasized before, the representative agent in this economy has a finite life horizon,
whereas the economy lives on forever. Therefore, the agent’s decision might be inefficient
from the social planner’s point of view. To see this, we start from comparing the equilibrium
allocation in this model with the outcome under the golden rule.

Rewrite the law of motion (14) here

Kt+1 − Kt = F(Kt, Lt) − cy
t Lt − co

t Lt−1 − δKt

= F(Kt, Lt) −Ct − δKt
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in which Ct = cy
t Lt − co

t Lt−1 is aggregate consumption in period t. Turn it into intensity form

Kt+1

Lt
− Kt

Lt
= F

(
Kt

Lt
, 1

)
− Ct

Lt
− δKt

Lt
,

that is

kt+1(1 + n) = f (kt) − ct + (1 − δ)kt. (22)

However, what we care about for evaluation is per capita consumption Ct
Lt+Lt−1

instead of per
labor consumption ct (note that only the young generation works in each period) in the equa-
tion above. But with slight algebra

Ct

Lt + Lt−1
=

ctLt

Lt + Lt−1
=

ct(1 + n)Lt−1

(1 + n)Lt−1 + Lt−1
=

1 + n
2 + n

ct

we see that per capita consumption is just constant times of per labor consumption. So the
maximization problem of per capita consumption is equivalent to the maximization problem
of per labor consumption ct.

In steady state kt = kt+1 = k∗, from (22)

c∗ = f (k∗) − (n + δ)k∗.
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The first order condition gives

dc∗

dk∗
= f ′(k∗) − (n + δ) = 0,

k∗GOLDEN =
(
f ′
)−1 (n + δ).

This implies that the steady state level of capital stock under golden rule only depends on two
exogenous parameters n and δ. In contrast, what we got from the equilibrium of overlapping
generation model is equation (15), implying that the steady state capital stock hinges on the
agent’s saving decision which may depend on the parameters more than n and δ.

To make it clear, we continue with our example. It’s simple to compute the steady state level
of capital stock under golden rule, given the parameters in the example

k∗GOLDEN =
(
f ′
)−1 (n + δ) =

(
α

n + δ

) 1
1−α
.

And we already got the equilibrium steady state capital stock

k∗ =

(
β

1 + β

1 − α
1 + n

) 1
1−α
.

Therefore, for any parameter set (β, α, n, δ) such that

α

n + δ
,

β

1 + β

1 − α
1 + n

we would get k∗ , k∗GOLDEN , suggesting that the equilibrium allocation of overlapping gener-
ation model may not be Pareto optimal.

4.4.3 Dynamic Inefficiency

The discussion above simply shows us an example in which the competitive equilibrium
allocation doesn’t coincide with the Pareto optimal solution, in an economy with an infinite
commodity space. This gives a chance in which the economic policy may improve the social
welfare — Most of such discussions are left in our exercises.

5 Readings

Blanchard and Fischer (1989) Chapter 3.
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6 Bibliographic Notes

The qualitative method for analyzing the economy’s response to the policy change is some-
times sketched in the textbooks, but often not discussed in depth (For example one popular
textbook states that “We . . . focus on the simple case where the [policy] change is unex-
pected. . . ”). Acemoglu (2009) is the only textbook which attempts to extend the Theorems
of Welfare Economics to cope with the problems with infinite commodity spaces, and the
classical form of the Theorems is well established in the mainstream advanced micro texts,
e.g. Mas-Colell et al. (1995), Varian (1992), just to name a few.

The overlapping generation model is founded by Allais (1947), Samuelson (1958) and Dia-
mond (1965). The section written here is just a summary of a wide selection of excellent chap-
ters from Acemoglu (2009), Barro and Sala-i-Martin (2004), Blanchard and Fischer (1989)
and Romer (2006). The model I presented is a much simplified but sufficiently generic ver-
sion, and further interesting issues are to be explored in the exercises. Two recent works may
be interesting: Galor and Ryder (1989) is an intensive study on the model’s equilibrium prop-
erties, and de la Croix and Michel (2002) contribute a comprehensive framework for policy
analysis based on overlapping generation models (note that the built-in imperfection of such
models is the natural justification for economic policies).

7 Exercises

7.1 Ramsey Model

Consider the Ramsey model from Exercise 1.5 with y = kα and U0 =
∫ +∞

0
e−ρt (c(t))β dt,

where 0 < α < 1 and 0 < β < 1.

a) Describe how each of the following unexpected changes affects the locus of ċ = 0 and
k̇ = 0 in a k − c diagram, and how they affect the balanced-growth-path values of c and k:

i) A rise in β;

ii) A downward shift in the production function (a lower α);

iii) A rise in the rate of depreciation;

iv) A fall in the rate of time preference ρ.

b) How do per-capita-consumption, capital intensity and the interest rate change during the
adjustment processes if the initial capital intensity is at the initial steady state?
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7.2 Ramsey Model for Decentralized Economy

Consider a Ramsey-Cass-Koopmans economy that is already on its balanced growth path.
Suppose that the government introduces a tax on investment τ income at time t = 0, unex-
pectedly. Thus, the real interest rate that households face is now given by r(t) = (1−τ) f ′(k(t)).
Assume that tax revenue is redistributed through lump sum transfers.

a) How does the tax affect the locus of ċ = 0 and k̇ = 0?

b) How does the economy respond to the adoption of the tax at t = 0, and what are the
dynamics afterwards?

c) Suppose there are many economies like this one, distinguished by different tax rates.

i) Show that the savings rate on the balanced growth path is decreasing in τ.

ii) Do citizens in high saving countries have an incentive to invest in low saving countries?

d) How, if at all, do the answers to part a) and b) change if the government does not rebate
the tax revenue but instead uses it for government purchases?

Suppose that instead of announcing and implementing the tax at time t = 0, the government
announces at t = 0 that it will begin to tax investment income at some later time t1. Then

e) Draw the phase diagram showing the dynamics of c and k after time t1.

f) Can c change discontinuously at t1? Why or why not?

g) Draw the phase diagram showing the dynamics of c and k before t1.

h) What must c do at time t = 0?

i) Summarize your results by sketching the paths of c and k as functions of time.

7.3 Ramsey Model with Technological Progress

Suppose that, in a Ramsey-Cass-Koopmans economy, production is given by the function
Yt = F(Kt, eφtLt), where φ is the constant and exogenous rate of technical progress. Assume
that the population grows at rate n and that the utility function is of constant relative risk
aversion form, with a coefficient of relative risk aversion equal to γ.

a) Derive and interpret the modified golden rule condition in this case.

b) Characterize the dynamics of consumption and capital accumulation.
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c) Suppose that the economy is in steady state and that φ decreases permanently and unex-
pectedly. Describe the dynamic adjustment of the economy to this adverse supply shock.

7.4 Hand-to-Mouth Workers in the Ramsey Economy

Consider the following variantion of the simplest neoclassical growth model. Half of the
population, the “hand-to-mouth”consumers, simply consume any labor income they earn each
period — they never own any assets whatsoever. The other half, the “savers”, have preferences
and choices as in the standard neoclassical model. There is no population growth and we
conveniently normalize the total population to be a continuum of size 2.

The preferences for the savers are standard

+∞∑

t=0

βtu (ct)

for some β < 1, and u twice continuously differentiable, increasing and strictly concave with
the Inada condition limc→0 u′(c) = +∞.

Technology is given by the constant returns to scale Cobb-Douglas production function

Yt = Kα
t L1−α

t .

Labor, Lt, is supplied inelastically by both types of agents each period with total labor supply
normalized to 1. The savers and the hand-to-mouth agents each supply 1

2 .

The resource constraint is

Ct + Kt+1 = Yt + (1 − δ)Kt

where Ct = c1
t +c2

t is aggregate consumption and c1 represents consumption of hand to mouth
consumers and c2 consumption of savers. Note that we do not describe the preferences of the
hand-to-mouth agents, just their behavior.

a) Setup the standard description of markets for labor and capital, stating the budget con-
straints faced by savers and hand to mouth consumers, the (static) problem of the firm. Define
a competitive equilibrium.

b) Show that in equilibrium the labor income and consumption of the hand-to-mouth agents
is a constant fraction λ of output Yt. Determine λ.

c) Argue that the competitive equilibrium is Pareto optimal for the “savers”in the following
sense, it solves
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max
{ct}+∞t=0

+∞∑

t=0

βtu (ct) ,

s.t. Ct + Kt+1 = (1 − λ)Kα
t L1−α

t + (1 − δ)Kt

where λ is a constant fraction of output that goes to the hand-to-mouth agents found in b).

d) Does the introduction of the hand-to-mouth consumers affect the steady state level of cap-
ital? Does the introduction of the hand-to-mouth consumers affect the equilibrium dynamics
of consumption, output and capital relative to the case without hand-to-mouth consumers?
Discuss: Stability, uniqueness of the steady-state, monotonicity and the speed of convergence
to the steady state (Hint: For the speed of convergence take a linear approximation around the
steady state with and without the hand-to-mouth consumers).

7.5 Labor-Leisure Choice in the Ramsey Economy

Consider a Ramsey growth model where the representative consumer maximizes

U =

+∞∫

0

e−ρtu [c(t), l(t)] dt, ρ > 0

with instantaneous preferences over consumption c(t) and hours of work l(t)

u [c(t), l(t)] = ln c(t) − θ l(t)1+η − 1
1 + η

, θ > 0, η > 0.

Workers have a time endowment of one unit of labour, so l(t) ∈ [0, 1] (Assume a constant
population, normalised to 1.) Hours worked, l(t), are combined with physical capital, k(t), to
produce output, y(t), through a Cobb-Douglas technology

y(t) = k(t)αl(t)1−α, α ∈ (0, 1).

Capital accumulation in the economy follows

k̇(t) = i(t) − δk(t)

where i(t) is investment and capital depreciates at rate δ. The goods market clears at all times
t

y(t) = c(t) + i(t).
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a) State the planner’s problem for this economy. Write down the Hamiltonian and derive the
optimality conditions.

b) Express consumption and the capital stock in terms of units of labour, and call the new
normalized variables ĉ(t) and k̂(t). Are the steady-state levels of consumption ĉ(t) and capital
k̂(t) different from the standard Ramsey model without endogenous labour supply? Explain.

c) Derive the following expression for l̇
l as a function of

˙̂k
k̂

and ˙̂c
ĉ

l̇
l

= − 1
1 + η

˙̂c
ĉ

+
α

1 + η

˙̂k

k̂
.

Provide some economic interpretion for this equation.

d) By using the dynamic equations of
˙̂k
k̂

and ˙̂c
ĉ show that

l̇
l

=
α

α + η

[
ĉ∗

k̂∗
− ĉ(t)

k̂(t)

]
.

Show that when k̂(0) < k̂∗, ĉ(t)
k̂(t)

declines monotonically along the saddle path to the steady

state. Explain whether the speed of convergence of k̂(t) to the steady state is larger or smaller
than for the standard Ramsey model.

7.6 Two-Sector Neoclassical Growth Model

Consider an economy with a representative consumer whose preference is described by

+∞∑

t=0

βt c1−σ
t

1 − σ.

a) (Two-Sector neoclassical growth model) Assume that there are separate technologies for
producing the consumption good and the investment good. Capital and labor can be moved
freely across the two sectors. The resource constraints are given by

ct ≤ lαc k1−α
c ,

it ≤ lγi k1−γ
i ,

lit + lct ≤ 1,
kit + kct ≤ kt,

kt+1 = (1 − δ)kt + it.
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Write down the planning problem for this economy. Derive the first order conditions and
characterize the steady state.

b) (Two-Sector neoclassical growth model with immobile capital) Now consider the same
model under the additional assumption that there are two different types of capital, one used
in the consumption goods sector and one in the investment goods sector. The two types of
capital cannot be transformed into each other. The resource constraints are given by

ct ≤ lαc k1−α
c ,

iit + ict ≤ lγi k1−γ
i ,

lit + lct ≤ 1,
kit+1 = (1 − δ)kit + iit,

kct+1 = (1 − δ)kct + ict.

Write down the planning problem for this economy. Derive the first order conditions and
characterize the steady state.

7.7 Overlapping Generations: Properties of Steady States, Poverty Trap

Consider an overlapping generation economy with the agents’ generational preferences fea-
tured by

ut = u
(
cy

t , c
o
t+1

)
=

(
cy

t c
o
t+1

) 1
2 .

The production function is defined as

f (k) =



2 + 5k − k ln k for 0 < k ≤ 4

−10 + (8 + 3 ln 4)k − 4k ln k for 4 < k ≤ 6

8 + (5 + 3 ln 4 − 3 ln 6)k − k ln k for 6 < k ≤ 10.

Normalize the population size to be one and assume a population growth rate of zero.

a) Is f (k) a neoclassical production function?

b) Derive the first order conditions for the profit maximizing production sector. Show that
these conditions give rise to a continuous, positive, and decreasing function r(k) and to a
continuous, positive and increasing function w(k).

c) Calculate the optimal solutions for cy
t and co

t+1. Provide some intuitions for your results.
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d) Characterize the dynamics of kt, i.e. specify the function kt+1 = φ(kt). Find the steady
state(s) of the economy, and interpret your findings.

7.8 Overlapping Generations: Dynamic Inefficiency

Consider the following economy of overlapping generations of vegetarians. Assume there is
an equal number of young and old individuals and population N is constant. Each individual
is endowed with one vegetable at birth. While young, the individual decides how much of the
vegetable to eat, and how much to plant (there are no refrigerators so it can not be stored).
If a fraction s of the vegetable is planted, then Asα vegetables will grow for second-period
consumption, in which A > 0 and 0 < α < 1. The portion planted cannot be eaten (this is
equivalent to 100% depreciation). Utility is of the form:

u(c1t, c2t+1) = ln c1t + ln c2t+1.

a) Write down the individual’s decision problem. How much does the individual consume
and save in the first period?

b) Can trade between generations take place in this economy? Describe the equilibrium in
this economy.

c) Suppose that in each period the government confiscates a fraction f of each young per-
son’s vegetable, and distributes the proceeds equally among the old individuals. Find expres-
sions for first and second period consumption, c1t and c2t+1, in this case.

d) Conider a small increase in f starting from f = 0. Derive an expression for welfare as a
result of this policy.

e) Under what conditions is the policy in part d) welfare improving? Provide a brief intuitive
explanation.

7.9 Social Security and Capital Accumulation in Overlapping Generations Model

Consider the basic overlapping generations model with two-period lived individuals as de-
scribed in our class notes. To simplify assume a time-separable utility function

u(t) = u
(
cy

t
)

+ βu
(
co

t+1
)
, β ∈ (0, 1).

The economy has a social security system. Denote dt the contribution of a young person at t
and bt the benefit received by an old person at t. Thus, the budget constraints faced by each
generation t become
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cy
t + st ≤wt − dt,

co
t+1 ≤ (1 + rt+1) st + bt+1.

We distinguish between two types of social security systems: one is fully funded, the other is
unfunded (the latter is often called pay-as-you-go system).

The fully funded system invests the contributions of the young at t and returns the investment
with interest at t + 1 to the then old. Accordingly, it holds that

bt+1 = (1 + rt+1) dt.

The pay-as-you-go system transfers current contributions made by the young to the current
old so that

bt =
Lt

Lt+1
dt. (23)

a) Suppose the economy is in a steady state with kt = k∗.

(1) Determine and compare the rate of return on per capita contributions that each gener-
ation can expect under the fully funded system and under the pay-as-you-go system.
Interpret your findings.

(2) How does your result change if we add exogenous labor-saving technical change, i. e.,
assume a final-good production function Yt = F(Kt, AtLt) where At = (1+ x)At−1, A0 > 0
and x > −1 given. Consider a steady state k̂t = kt

At
= k̂∗ and a contribution rate 0 < τ < 1

such that dt = τwt.

b) Consider an economy with a fully funded system. Show the following result: if dt ≤
(1 + n)kt+1 for all t, then the fully funded social security system has no effect on total savings
and capital accumulation. In other words, the equilibrium path of the economy is independent
of whether it runs a fully funded social security system or none. Interpret this result.

c) Consider an economy with a pay-as-you-go system.

(1) Set up the Euler equation of a representative individual of generation t.
(a) Study the comparative-static effect (keeping wt and rt+1 constant) of the obligation

to pay contributions when young, dt > 0, and the expectation to receive transfers
when old, (1 + n)dt+1 > 0 (here use (23)), on the incentives to save.

(b) Suppose dt = dt+1 = d. Show that
∣∣∣∣∣
dst

dd

∣∣∣∣∣ ≷ 1⇔ n ≷ rt+1.

(2) Argue that the evolution of kt can be stated as

(1 + n)kt+1 = s(w(kt), r(kt+1), d). (24)
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(3) Suppose (24) defines a well-behaved relationship between kt and kt+1 (such that the
steady state exists). Show that

dkt+1

ddt
< 0.

Discuss the implications of this result for capital accumulation. Is this a desirable out-
come?

7.10 Overlapping Generations with Money

(Samuelson, 1958) Suppose, as in the Diamond (1965) model, that Nt 2-period-lived individ-
uals are born in period t and that generations are growing with rate n. The utility function of a
representative individual is Ut = ln c1,t + ln c2,t+1. Each individual is born with an endowment
of A units of the economy’s single good. The good can either be consumed or stored. Each
unit stored yields x > 0 units next period.

In period 0, there are N0 young individuals and 1
1+n N0 old individuals endowed with some

amount Z of the good. Their utility is simply c2,0.

a) Describe the decentralized equilibrium of this economy. (Hint: Will members of any
generation trade with members of another generation?)

b) Consider paths where the fraction of agents endowment that is stored, st, is constant over
time. What is per capita consumption (weighted average from young and old) on such a path
as a function of s?

c) If x < 1 + n, which value of s ∈ [0, 1] is maximizing per capita consumption?

d) Is the decentralized equilibrium Pareto-efficient? If not, how could a social planner raise
welfare?

Suppose now that old individuals in period 0 are also endowed with M units of a storable,
divisible commodity, which we call money. Money is not a source of utility. Assume x < 1+n.

e) Suppose the price of the good in units of money in periods t and t + 1 is given by Pt and
Pt+1, respectively. Derive the demand functions of an individual born in t.

f) Describe the set of equilibria.

g) Explain, why there is an equilibrium with Pt → +∞. Explain why this must be the case
if the economy ends at some date T that is common knowledge among all generations.
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