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Dynamic Systems

For want of a nail the shoe is lost

For want of a shoe the horse is lost

For want of a horse the rider is lost

For want of a rider the battle is lost

For want of a battle the kingdom is lost

And all for the loss of a horseshoe nail

—George Herbert (1633), Jacula Prudentum
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1 Introduction

The dynamic of an economic system often results in a system of differential equations as
following:

ẋ(t) = F(x(t)),

which is called a system of first-order autonomous ordinary differential equations. This is a
simply concise form of



ẋ1(t) = f1(x1(t), . . . , xn(t)),

ẋ2(t) = f2(x1(t), . . . , xn(t)),

. . . . . .

ẋn(t) = fn(x1(t), . . . , xn(t)).

The dynamic of any variable xi(t)(∀i ∈ {1, . . . , n}) is jointly determined by a function fi(x1(t), . . . , xn(t)) :
Rn → R of all variables in this system. The system is autonomous because fi doesn’t involve
any variable other than x1(t), . . . , xn(t). The differential equations are first-order with respect
to time, for normally in economics we only study the speed of the variables’ adjustment rather
than acceleration.

The value x∗ such that

F(x∗(t)) = 0 (1)

is called steady-state value of x since x(t) doesn’t change overtime. The concept of steady-
state is of special interest in macroeconomics as equilibrium concept, for one may think of
it as a state at which an economy ends given sufficiently long time. And since such a state is
time-invariant, people often take it as a baseline for policy analysis.

If we think about the concept over, it’s natural to raise two more direct concerns:

• Existence. One may ask whether such a steady state exists at all, i.e. whether there is an
equilibrium at which the economy stays with time-invariant properties. Usually this is not
difficult to see by verifying the existence of solution for equation (1);

• Reachability, or stability. Suppose that steady state exists. Then one may ask, given the
initial condition x(0) = (x1(0), . . . , xn(0)), whether there is a path G(x(t)) = 0 by which
the economy can reach the steady state (problem of reachability). For example, given the
initial conditions x(0) (which may contain today’s level of consumption, capital stock,
labor supply etc.) of a developing country we can ask whether people can choose the proper

2



values of x(t) from now on (i.e. the path) and reach the state x∗ they desire (i.e. steady state).
A similar (but not the same) question might be whether the system stays around the steady
state or diverge if we perturb a system in the steady state (problem of stability – think
about the horseshoe nail). These two questions are closely related in mathematics, and are
the central issue in the following lecture.

In the following sections we provide two approaches to analyzing a system of first-order au-
tonomous ordinary differential equations. The first is a graphical analysis using the phase dia-
gram. The advantage of this approach is that it is simple, economically founded and provides
a qualitative, sometimes semi-quantitive solution. Furthermore, this approach works for both
nonlinear and linear systems. The main drawback is that it works best for two-dimensional
systems (occasionally one may try to work it out for three-dimensional systems, but usually
it’s not suitable for even higher dimensions). The other is an analytical approach. The ad-
vantages of it are that it gives quantitative results and can be applied in larger systems. The
disadvantage is that it works best for linear equations, and one needs much more effort in
treating nonlinear systems with analytical approach.

As a least technical exposure, in this chapter we only talk about two-dimensional systems
which should be sufficient for most applications in this course. The facts for systems of higher
dimensions are given in the appendix.

2 Graphical Analysis

For a system of autonomous ordinary differential equations as the one we concern



ẋ1(t) = f1(x1(t), . . . , xn(t)),

ẋ2(t) = f2(x1(t), . . . , xn(t)),

. . . . . .

ẋn(t) = fn(x1(t), . . . , xn(t)),

the space without t dimension, (x1, . . . , xn) ∈ Rn, is called phase space. The basic idea behind
graphical methods is to identify the driving forces from each xi,∀i ∈ {1, . . . , n} by plotting
the phase diagram in the phase space. We show this procedure by an example, and readers
are asked to do more exercises in P S 1 and 2.

The following result is what we got from a Ramsey-Cass-Koopmans model in which the
production function is neo-classical and there is neither population growth nor technological
progress.
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
k̇(t) = f (k(t)) − c(t) − δk(t),
ċ(t)
c(t) = f ′(k(t)) − δ − ρ.

(k, c) ∈ R2
+ forms a two-dimensional phase space. The steady state (k∗, c∗) is the point where

k̇(t) = 0 as well as ċ(t) = 0, i.e. there is no driving force, from either k or c, pushing the
system to elsewhere when the system stands exactly at (k∗, c∗). Then the problem of stability
is equivalent to:

∀(k, c) ∈ R2
+ and (k, c) , (k∗, c∗), where will the system go with driving forces from k and c?

If we can identify such driving forces for every point in the phase space, we are able to
say something about stability. For example the system is surely stable if it is driven towards
(k∗, c∗) at any (k, c).

2.1 The Dynamics of k

First let’s have a look on the driving forces from k, given k̇(t) = f (k(t)) − c(t) − δk(t). Let’s
begin with finding the points on which k doesn’t play a role, i.e. k̇(t) = 0. Then we can write
c as a function of k: c(t) = f (k(t)) − δk(t), meaning that c is the difference between f (k) and
δk as the blue-shaded part in F 1, plotted as k̇(t) = 0 curve in F 2. For any point on
k̇(t) = 0 curve (e.g. point 1 in F 2) k doesn’t change over time.

k
GOLDEN

k

( )f k

k

Fig. 1. k − c R  k̇ = 0
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Fig. 2. T D  k

Then let’s take an arbitrary point above this curve (e.g. point 2 in F 2), i.e. c is larger
than f (k) − δk. From k̇(t) = f (k(t)) − c(t) − δk(t) larger c makes k̇(t) < 0 meaning that k
decreases overtime. Therefore for any point above k̇(t) = 0 there is a driving force from k
pushing the system to the direction with lower k. The similar argument can be stated for the
point below k̇(t) = 0 (e.g. point 3 in F 2).

2.2 The Dynamics of c

Any point on which c doesn’t play a role lies on the curve ċ(t) = 0, which simply mean that
f ′(k(t)) − δ − ρ = 0. Since f (k) is strictly monotone, k can be solved as k∗ = ( f ′)−1 (δ + ρ) as
plotted in F 3.

For an arbitrary point to the left this curve k becomes less, then ċ(t)
c(t) = f ′(k(t)) − δ − ρ > 0

because of f ′(k) > 0 and f ′′(k) < 0. c increases over time as point 2 in F 3. Similarly c
decreases for the points to the right of ċ(t) = 0, such as point 3 in F 3.

2.3 The Phase Diagram

From the analysis above we know that for each point (c, k) the system is driven by the forces
from c and k. Now we combine F 2 and F 3 to see how the system behaves under
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Fig. 3. T D  c

the aggregate force, as shown in F 4. k̇(t) = 0 and ċ(t) = 0 split the phase space into four
parts, A, B, C and D. The joint of these two curves, E, is simply the steady state (the readers
will be asked why k∗ < kGOLDEN in the P S). Take an arbitrary point (1) from A as an
example. Since it is located above k̇(t) = 0, it is pushed to the west by k. And since it is also
located to the left of ċ(t) = 0, it is pushed to the north by c. As a result, the system starting
from this point would be pushed to north-west, i.e. getting lower in k and higher in c. The
readers can try to analyze the behaviour of other representative points, from (2) to (8).

If one plots the forces for more points, as shown in F 5, one (or one’s computer) can
find the main characteristics of the system:

• The system is unstable, because there are forces driving the system away from the steady
state (especially in regions A and D);

• There are two trajectories going through the steady state. One leads the system towards
the steady state, called stable arm; the other leads the system away from the steady state,
called unstable arm.

These facts are very interesting – although the system is basically unstable, we are still able
to approach the steady state if we manage to set the right (k, c) following the stable arm.
Such steady state is called a saddle path equilibrium since a system on the saddle path is
extremely sensitive to perturbations. For example, in F 6 starting from any k(0) < k∗ the
only possible way to approach E is to choose c(0) defined by the saddle path. Any higher (as
(1)) or lower (as (3)) c leads the system to inferior solutions. The same argument also holds
for those k′(0) > k∗.
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Fig. 4. T D  c  k

3 Analytical Analysis

We can also analyze the stability problem in an analytical way. The simplest and most widely
studied case is the system of linear differential equations. Since it gives straight-forward quan-
titative results, in practice people tend to set up a system in a linear way or transform a non-
linear system into a linear one. In this section we will expose a complete characterization for
two-dimensional linear systems, and you will see the same patterns of stability as those we
explored in the previous section. Then we use log-linearization techniques upon non-linear
systems, which allow us to apply our knowledge of linear systems for non-linear cases.

3.1 Linear Systems

Consider a general two-dimensional linear system


ẋ1(t) = a11x1(t) + a12x2(t),

ẋ2(t) = a21x1(t) + a22x2(t),

in which ai j ∈ R (i, j ∈ {1, 2}) as well as
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Fig. 5. T F  F
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Fig. 6. T P D   S P

det A =

∣∣∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣∣∣
, 0.
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A is defined as the coefficient matrix

A =


a11 a12

a21 a22

 .

Compute eigenvalues λ1 and λ2 from characteristic equation

∣∣∣∣∣∣∣∣
a11 − λ a12

a21 a22 − λ

∣∣∣∣∣∣∣∣
= 0,

and this is equivalent to solving a quadratic equation in λ

(a11 − λ)(a22 − λ) − a12a21 = 0,
λ2 − (a11 + a22)λ + a11a22 − a12a21 = 0,

λ2 − trAλ + det A = 0.

By discriminant ∆ = tr2A − 4 det A one can see that

• If ∆ ≥ 0 the equation has two real roots

λ1,2 =
trA ± √∆

2
;

• If ∆ < 0 the equation has two complex roots

λ1,2 =
trA ± √|∆|i

2
,

and λ1 + λ2 = trA, λ1λ2 = det A.

Then apply λ1 and λ2 respectively into the following equations


a11 − λ a12

a21 a22 − λ




u1

u2

 = 0

and solve (u1, u2) = (α1, α2) for λ1 as well as (u1, u2) = (β1, β2) for λ2.

(1) The eigenvalues are real numbers, i.e. ∆ ≥ 0 λ1, λ2 ∈ R. The general solution takes the
form as following


x1 = c1α1 exp(λ1t) + c2β1 exp(λ2t),

x2 = c1α2 exp(λ1t) + c2β2 exp(λ2t),
(2)
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in which c1 and c2 are constants.
• If λ1 < 0, λ2 < 0 i.e. λ1 +λ2 = trA < 0, λ1λ2 = det A > 0, the system is asymptotically

stable as F 7 shows. The steady state
(
x∗1, x∗2

)
is called stable node;

x2

x1(

* *

1 2
,x x

Fig. 7. S S: λ1 < 0, λ2 < 0

• If λ1 > 0, λ2 > 0 i.e. λ1 + λ2 = trA > 0, λ1λ2 = det A > 0, the system is unstable as
F 8 shows. The steady state

(
x∗1, x∗2

)
is called unstable node;

x2

0

x1

* *

1 2
,x x

Fig. 8. U S: λ1 > 0, λ2 > 0

• If λ1 > 0, λ2 < 0 i.e. λ1λ2 = det A < 0, the system is unstable as F 9 shows.
However there exists a saddle path leading to the steady state. Such steady state is
called saddle point.

(2) F The eigenvalues are complex numbers, i.e. ∆ < 0, λ1, λ2 < R and λ1 = p + iq,
λ2 = p − iq with q , 0. The general solution takes the form as following


x1 = exp(pt)(c1 cos qt + c2 sin qt),

x2 = exp(pt)(c′1 cos qt + c′2 sin qt),

in which c1 and c2 are constants, and c′1 and c′2 are their linear combinations.
• If λ1 = p + iq, λ2 = p − iq with p < 0 and q , 0, i.e. λ1 + λ2 = trA < 0, the system is

oscillatingly stable as F 10 shows. The steady state
(
x∗1, x∗2

)
is called stable spiral

10



x2

x1�

* *

1 2
,x x

Fig. 9. U S  S P: λ1 > 0, λ2 < 0
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Fig. 10. S O S: Reλ1 < 0, Reλ2 < 0

• If λ1 = p + iq, λ2 = p − iq with p > 0 and q , 0, i.e. λ1 + λ2 = trA > 0, the system is
oscillatingly unstable as F 11 shows. The steady state

(
x∗1, x∗2

)
is called unstable

spiral point;
• If λ1 = p + iq, λ2 = p − iq with p = 0 and q , 0, i.e. λ1 + λ2 = trA = 0, the system is

oscillatingly stable as F 12 shows. The steady state
(
x∗1, x∗2

)
is called center.

F 13 is a summary of all the cases.

3.2 Non-Linear Systems

The analysis of a non-linear system needs more rigrous maths. But in economics we often
concern more about the system’s behaviour around the steady state. So people log-linearize
the system around the steady state by using first-order Taylor expansion to get an linear sys-
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Fig. 11. U O S: Reλ1 > 0, Reλ2 > 0
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Fig. 12. O S: Reλ1 = 0, Reλ2 = 0

tem as an approximation. Then one can apply all the lessons we have learned in the previous
section.

3.2.1 Log-Linearization

Log-linearization is a very useful trick in macroeconomic analysis by using the nice proper-
ties of logarithm functions. Suppose that Xt is a strictly positive variable, and X is its steady
state. Define

xt = ln Xt − ln X

as the logarithmic deviation. Notice that limκ→0 ln(1 + κ) = κ, then

12



1 2
det A

1 2
trA

0
Stable spiral points 

Unstable spiral points 

Centers

Stable nodes 
Unstable nodes 

Saddle points 

0

Fig. 13. S

xt = ln
(Xt

X

)
= ln

(
1 +

Xt − X
X

)
≈ Xt − X

X
,

i.e. xt is approximately the percentage deviation of Xt from the steady state when such devia-
tion is small, capturing the local behavior around the steady state.

Now let’s consider a general functional form. Suppose that we have an equation as following

f (At, Bt, . . .) = g(Zt)

in which At, Bt, . . . , Zt are strictly positive variables, and f (·), g(·) may be non-linear in the
variables. Also this equation has a steady state such that

f (A, B, . . .) = g(Z).

To implement log-linearization around steady state rewrite the equation using the fact that
Xt = exp(ln Xt) and then take logs on both sides

ln f (exp(ln At), exp(ln Bt), . . .) = ln g(exp(ln Zt)).

Take the first order Taylor approximation around the steady state (ln(A), ln(B), . . . , ln(Z))

ln f (A, B, . . .) +
1

f (A, B, . . .)

[
∂ f (A, B, . . .)

∂A
A(ln At − ln A) +

∂ f (A, B, . . .)
∂B

B(ln Bt − ln B) + . . .

]
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= ln g(Z) +
1

g(Z)
[
g′(Z)Z(ln Zt − ln Z)

]
,

using the definition xt = ln Xt − ln X and rearrange the equation above one can get

∂ f (A, B, . . .)
∂A

Aat +
∂ f (A, B, . . .)

∂B
Bbt + . . . = g′(Z)Zzt,

Since A, B, . . . ,Z are constants, the original non-linear equation is adapted to a new equation
that is linear in at, bt, . . . , zt.

3.2.2 Example

Consider the example exposed in S 2. For simplicity assume that the production func-
tion is Cobb-Douglas.


ċ(t)
c(t) = αk(t)α−1 − δ − ρ,
k̇(t) = k(t)α − c(t) − δk(t).

Rewrite the expression of ċ(t)
c(t) into log-linearized form

d ln c
dt

= α exp [(α − 1) ln k] − δ − ρ, (3)

as well as the expression of k̇(t)
k(t)

d ln k
dt

= exp [(α − 1) ln k] − exp
[
ln

(c
k

)]
− δ. (4)

Applying first order Taylor expansion to these two equations around steady state (c∗, k∗), it’s
simple to get ċ

c from (3)

d ln c
dt

=α(α − 1) exp [(α − 1) ln k∗]
[
ln

(
k
k∗

)]

= (α − 1)(ρ + δ)
[
ln

(
k
k∗

)]
,

as well as k̇
k from (4)
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d ln k
dt

=

{
(α − 1) exp [(α − 1) ln k∗] + exp

[
ln

(
c∗

k∗

)]} [
ln

(
k
k∗

)]

− exp
[
ln

(
c∗

k∗

)] [
ln

( c
c∗

)]

= ρ

[
ln

(
k
k∗

)]
−

(
ρ + δ

α
− δ

) [
ln

( c
c∗

)]
.

For simplicity, rewrite the linearized system as


d ln k

dt

d ln c
dt

 =


ρ −

(
ρ+δ

α
− δ

)

(α − 1)(ρ + δ) 0




ln

(
k
k∗

)

ln
(

c
c∗

)
 = A


ln

(
k
k∗

)

ln
(

c
c∗

)
 .

To find the eigenvalues of matrix A, solve

∣∣∣∣∣∣∣∣
ρ − λ −

(
ρ+δ

α
− δ

)

(α − 1)(ρ + δ) −λ

∣∣∣∣∣∣∣∣
= 0

for λ and this gives

λ1 =
ρ −

√
ρ2 + 4(1 − α)(ρ + δ)

(
ρ+δ

α
− δ

)

2
< 0,

λ2 =
ρ +

√
ρ2 + 4(1 − α)(ρ + δ)

(
ρ+δ

α
− δ

)

2
> 0,

showing the existence of saddle path (λ1 is the stable solution).

One can also arrive at the same conclusion in a simpler way. From

A =


ρ −

(
ρ+δ

α
− δ

)

(α − 1)(ρ + δ) 0



we know that

λ1λ2 = det A =

(
ρ + δ

α
− δ

)
(α − 1)(ρ + δ) < 0,

(because 0 < α < 1, ρ > 0, δ > 0) as well as
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λ1 + λ2 = trA = ρ > 0.

Therefore

∆ = tr2A − 4 det A > 0

meaning that

• Matrix A has two different real eigenvalues (∆ > 0);
• These two eigenvalues are different in signs (λ1λ2 = det A < 0);
• The system is unstable with a saddle path.

What’s more, we can go one step further to calculate the time paths, i.e. the solutions for
ln k(t) and ln c(t). From (2) we can find the solution for ln k(t)

ln k(t) = ln k∗ + c1α1 exp(λ1t) + c2β1 exp(λ2t).

Given the fact that λ1 < 0, λ2 > 0 and limt→+∞ ln k(t) = ln k∗ < +∞, it must be that c2β1 = 0.
And suppose that the system starts from the initial condition ln k(t = 0) = ln k(0), then

ln k(0) = ln k∗ + c1α1,

c1α1 = ln k(0) − ln k∗.

Then the time path for ln k(t) is

ln k(t) = ln k∗ + [ln k(0) − ln k∗] exp(λ1t),
ln k(t) =

[
1 − exp(λ1t)

]
ln k∗ + ln k(0) exp(λ1t).

And we do see that ln k(t) asymptotically converges to ln k∗:

lim
t→+∞

ln k(t) = ln k∗.

Finding the time path for ln c(t) is left as an exercise for the readers.

3.3 F Systems of Higher Dimensions

Curious readers may wonder the same problem for the systems of higher dimensions, such as

16





ẋ1(t) = a11x1(t) + . . . + a1nxn(t),

ẋ2(t) = a21x1(t) + . . . + a2nxn(t),

. . . . . .

ẋn(t) = an1x1(t) + . . . + annxn(t).

Write it in matrix form



ẋ1(t)

ẋ2(t)

. . .

ẋn(t)



=



a11 a12 . . . a1n

a21 a22 . . . a1n

. . . . . . . . . . . .

an1 an2 . . . ann





x1(t)

x2(t)

. . .

xn(t)



,

that is

ẋ(t) = Ax(t).

Certainly there are similarities as the case for systems of lower dimensions. One can easily
imagine that if all eigenvalues of A are positive, i.e. λi ∈ R+,∀i ∈ {1, . . . , n}, the system is
unstable since for any point other than the steady state the forces from all directions push it
away from the node. And by the similar argument, if all eigenvalues are positive, i.e. λi <
0,∀i ∈ {1, . . . , n}, the system is stable since for any point other than the steady state the forces
from all directions push it towards the node.

The interesting question arises when m (with 1 ≤ m < n) eigenvalues are negative and n − m
are positive. The system is certainly not stable, however, one may ask whether there exists
something like “saddle path”for two-dimension case following which the system is able to
converge to the steady state. Theorem A.1 in the appendix gives the answer to this question.
Basically such “saddle path”exists in the form of m-dimensional manifold, for example the
saddle path in two-dimension case, a curve, is a one-dimensional manifold.

A more general conclusion is stated in Theorem A.2. Normally numerical methods with the
help of computers are the only choice when people analyze high dimensional systems. Inter-
ested readers may refer to Zeidler et al. (2003).

4 Readings

Barro and Sala-ı́-Martin (2004), A  M M A.1.

17



5 Bibliographic Notes

Example in S 2 is a simplified exposure of Romer (2006) C 2A, and the example
in S 3.2.2 is similar to that in Barro and Sala-ı́-Martin (2004), C 2 A.

Methods of analyzing systems of differential equations can be found in any one of the math-
ematical books for economists listed in the first chapter of our class notes, and Barro and
Sala-ı́-Martin (2004), A  M M A.1 presents a concise summary
for your quick references. For one who wants more details, Blanchard, Devaney and Hall
(1998) is recommended for its completeness and accessibility.

6 Exercises

6.1 Graphical Analysis: Phase Diagram

a) Find the solution of the following initial value problem. Analyze the dynamics in the
phase space, and describe the behavior of the solution as t → +∞.

ẋ = Ax =


−2 1

−5 4

 x with x(0) =


1

3

 .

b) Consider each of the following systems of ordinary differential equations. Analyze the
dynamics in the phase space, and describe the stability properties of the steady-state(s).

1.


ẋ1 = 1

2 x
1
2
1 − 1

2 x1 − x2,

ẋ2 = x−
1
2

1 − 1.

2.


ẋ1 = 1

2 x
1
2
1 − 1

2 x1 − x2,

ẋ2 = x2 − x1

with x1 , 0.

6.2 Analytical Analysis

Redo P 6.1 b) with analytical approach.
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Appendix

A Useful Results of Mathematics

A.1 Definitions of Stability

Definition (Lyapnov Stability) For a system of ordinary differential equations

ẋ(t) = F(x(t))

a state x∗ is Lyapunov stable if every neighbourhood Bx∗ of x∗ contains a neighbourhood
B0 ⊆ Bx∗ of x∗ such that given the initial condition x(0) the solution to the system lies in Bx∗ ,
∀x(0) ∈ B0.

Simply speaking, Lyapnov stability implies that given a small perturbation on the state x∗ the
system doesn’t move further away from x∗ with the time going on.

Definition (Asymptotic Stability) For a system of ordinary differential equations

ẋ(t) = F(x(t))

a state x∗ is asymptotically stable if it is Lyapunov stable and ∃B∗x∗ such that ∀x(0) ∈ B∗x∗

lim
t→+∞

x(t)|x(t=0)=x(0) = x∗.

Simply speaking, asymptotic stability implies that given a small perturbation on the state x∗
a Lyapnov stable system move back towards x∗ with the time going on.
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A.2 General Theorems for the Path of Convergence

Theorem A.1 (Path of Convergence, Linear Differential Equation System) Consider the fol-
lowing linear differential equations system

ẋ(t) = Ax(t) + b

with initial value x(0), where x(t) ∈ Rn for all t and A is an n × n matrix. Suppose that x∗
is the steady state of the system, i.e. Ax∗ + b = 0. Suppose that m ≤ n of the eigenvalues of
A have negative real parts. Then there exists an m-dimensional manifoldM of Rn such that
starting from any x(0) ∈ M, the differential equation has a unique solution with x(t)→ x∗.

Theorem A.2 (Path of Convergence, General Differential Equation System) Consider the
following general autonomous differential equations system

ẋ(t) = F(x(t))

in which F : Rn → Rn and suppose that F is continuously differentiable, with initial value
x(0). Suppose that x∗ is the steady state of the system, i.e. F(x(t)) = 0. Define

A = OF(x∗)

and suppose that m ≤ n of the eigenvalues of A have negative real parts and the rest have posi-
tive real parts. Then there exists an open neighborhood of x∗, Bx∗ ∈ Rn and an m-dimensional
manifold M ∈ Bx∗ such that starting from any x(0) ∈ M, the differential equation has a
unique solution with x(t)→ x∗.
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