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One, Two, Three, . . . ,

Infinity

Ten little Indian boys went out to dine;

One choked his little self and then there were Nine.

Nine little Indian boys sat up very late;

One overslept himself and then there were Eight.

. . . . . .

Two little Indian boys playing with a gun;

One shot the other one and then there was One.

One little Indian boy left all alone;

He went out and hanged himself and then there were none.

—Agatha Christie (1939), Ten Little Niggers (And Then There Were None)
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1 Introduction

In this class we deal with the deterministic optimization problems, i.e. uncertainty is not yet
considered here.

An economic problem is often featured by the agent’s optimal decision problem, maximizing
her utility with the constraints of the resources she can use. And if the problem is made
dynamic, one has to consider a bigger problem concerning the decisions in multiple periods.
As a result, new techniques as well as new pitfalls emerge.

The beginning sections are more like warming-up sessions. In S 2 we start with the
static optimization problem with equality constraints, using our old friend, the Theorem of
Lagrange. However, we then formally explore the implication of Lagrange multiplier and
introduce the optimization problem with inequality constraints (the Kuhn-Tucker Theorem).
Next by manipulating the tools introduced before, we arrive at the method of optimal control.

Everything works fine in the finite time horizon. However in S 3 we will see the danger
if we transplant the approaches in the infinite time horizon, and discuss how to rescue the
infinitely living world.

2 The Deterministic Finite Horizon Optimization Problem

A problem with a finite horizon means that there is a terminal point in the decision process.
As we’ve seen before, it doesn’t matter (or, doesn’t matter that much) whether you construct
the problem in a discrete-time or continuous-time manner (in fact we will frequently switch
in between in the coming weeks). The issue that matters more is how the constraints are
imposed, in equalities or inequalities.

2.1 Basic Tools

2.1.1 Problems with Equality Constraints: The General Case

Readers may have already practiced the static optimization problems with equality constraints
for thousands of times in their undergraduate studies, and the problems won’t change much
if we simply introduce a finite time dimension, i.e. some constraints must hold for each of
the periods t ∈ {0, . . . ,T } — In a static problem people do maximization with respect to
n variables (x1, . . . , xn), and in a dynamic context with finite periods t ∈ {0, . . . ,T } we just
solve basically the same problem with n(T + 1) variables (x1, . . . , xn(T+1)). As we know the
Theorem of Lagrange, as T A.1 states, provides a powerful characterization of local
optima of equality constrained optimization problems in terms of the behavior of the objective
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function and the constraint functions at these points. Generally such problems have the form
as following

max f (x)
s.t. x ∈ D = U ∩ {x|g(x) = 0} ,

in which object function f : Rn(T+1) → R and constraints gi : Rn(T+1) → Rk(T+1),∀i ∈
{1, . . . , k(T + 1)} be continuously differentiable functions, and U ⊆ Rn(T+1) is open. To solve
it we set up a function called Lagrangian L : D× Rk(T+1) → R

L (x, λ) = f (x) +

k(T+1)∑
i=1

λigi(x)

in which the vector λ =
(
λ1, . . . , λk(T+1)

)
∈ Rk(T+1) is called Lagrange multiplier.

Then by T A.1 1 we find the set of all critical points of L (x, λ) for x ∈ U, i.e. the first
order conditions

∂L

∂x j
= 0, ∀ j ∈ {1, . . . , n(T + 1)},

∂L

∂λi
= 0, ∀i ∈ {1, . . . , k(T + 1)},

which simply say that these conditions should hold for each x and λ in every period.

Now we continue to explore the interpretation for the Lagrange multiplier λ. We relax the
equality constraints by adding a sufficiently small constant to each of them, i.e.

g(x, c) = g(x) + c

in which c = (c1, . . . , ck) is a vector of constants. Now the set of constraints becomes

D = U ∩ {x|g(x, c) = 0} .

Then by T A.1 at the optimum x∗(c) there exists λ∗(c) ∈ Rk(T+1) such that

D f (x∗(c)) +

k(T+1)∑
i=1

λ∗i (c)Dgi(x∗(c)) = 0. (1)

1 Please note that as a tradition people denote the derivative of a multi-variate function f (x) : Rn → R
by D f (x), which is an n dimensional vector D f (x) :=

[
∂ f (x1,...,xn)

∂x1
, . . . ,

∂ f (x1,...,xn)
∂xn

]
.
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Define a new function of c, F(c) = f (x∗(c)). Then by chain rule,

DF(c) = D f (x∗(c)) Dx∗(c).

Insert (1) into the equation above, one can get

DF(c) = −

k(T+1)∑
i=1

λ∗i (c)Dgi(x∗(c))

 Dx∗(c),

and this is equivalent to

DF(c) = −

k(T+1)∑
i=1

λ∗i (c)Dgi(x∗(c))Dx∗(c). (2)

Define another new function of c, Gi(c) = gi(x∗(c)). Then again by chain rule,

DGi(c) = Dgi (x∗(c)) Dx∗(c).

Insert this into (2), and one can get

DF(c) = −

k(T+1)∑
i=1

λ∗i (c)DGi(c). (3)

By the equality constraint g(x) + c = 0 one can easily see that

DGi(c) = −ei

in which ei is the i-th unit vector in Rk(T+1), i.e. the vector that has a 1 in the i-th place and
zeros elsewhere. Therefore (3) turns out to be

DF(c) =−

k(T+1)∑
i=1

λ∗i (c) (−ei)

= λ∗(c).

From the equation above one can clearly see that the Lagrange multiplier λi measures the
sensitivity of the value of the objective function at it maxima x∗ to a small relaxation of
the constraint gi. Therefore λi has a very straightforward economic interpretation, that λi

represents the maximum amount the decision maker would be willing to pay for a marginal
relaxation of constraint i — this is sometimes called the shadow price of constraint i at the
optima.
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2.1.2 Problems with Equality Constraints: A Simplified Version

The general case may be a little bit messy to go through, now we deal with the same problem
in a much simplified version, i.e. the univariate case which we are quite familar with. Suppose
that an agent maximizes her neoclassical utility function with respect to a single good x, and
x must follow an equality constraint,

max
x

u(x),

s.t. g(x) = 0.

Then the problem can be easily solved by setting up Lagrangian

L = u(x) + λg(x),

and the optimal x, denoted by x∗, can be derived from the first order conditions

∂L

∂x
= 0,

∂L

∂λ
= 0.

Now relax the constraint a little bit by ε around x∗, and rewrite the optimization problem at
x∗ as

max
ε

u(x∗, ε),

s.t. g(x∗) = ε.

By T A.1 the optimal value of ε can be solved from the first order conditions of the
Lagrangian

L ′ = u(x∗, ε) + λ
[
g(x∗) − ε

]
.

However, since we already know that x∗ is the optimal solution of the original problem, and
the optimal value of ε must be achieved when ε → 0, i.e.

∂L ′

∂ε

∣∣∣∣∣
ε→0

=
∂u(x∗, ε)
∂ε

− λ= 0,

λ=
∂u(x∗, ε)
∂ε

.

The last step clearly shows that the Lagrange multiplier λ measures how much the utility
changes when the constraint is relaxed a little bit at the optimum, i.e. the shadow price at the
optimum.
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2.1.3 Problems with Inequality Constraints: The General Case

For problems with inequality constraints, the solution procedure is pretty similar. The only
differences are the following: First, of course, the prototype problem is different in the con-
traints, which are now

x ∈ D = U ∩ {x|h(x) ≥ 0} .

Second, besides the first order conditions, there is an additional complementary slackness
condition saying that at optimum

λ∗ ≥ 0,
λ∗h∗ = 0.

The economic intuition behind the condition is pretty clear: If any resource i has a positive
value at the optima, i.e. λ∗i > 0, then it must be exhausted to maximize the object function,
i.e. h∗i = 0; and if any resource j is left at a positive value at the optima, i.e. h∗j > 0, then it
must be worthless at all, i.e. λ∗j = 0. To see how one can arrive at such results, an example is
exposed in the next section.

2.1.4 Problems with Inequality Constraints: An Example

(Adapted from Heer and Mauβner (2005), Chapter 1) Consider the following two-period
Ramsey-Cass-Koopmans problem 2 of a farmer. Suppose that

• Time is divided into two intervals of unit length indexed by t = 0, 1;
• Kt and Nt denote the amounts of seeds and labor available in period t;
• Seeds and labor input produce an amount Yt of corn according to the neoclassical produc-

tion function Yt = F (Kt, Lt);
• For each period t the farmer must decide
· how much corn to produce,
· how much corn to eat, and
· how much corn to put aside for future production;

• Next period’s seed is next period’s stock of capital Kt+1;
• Choice of consumption Ct and investment
· is constrained by current production

Ct + Kt+1 ≤ Yt,

· aims at maximizing the utility function (assume that U(·) satisfies Inada condition)

2 We will interpret all the settings and results later. Readers are only asked to understand the tech-
niques here.
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U(C0,C1) = u(C0) + βu(C1);

· Leisure does not appear in the utility function; assume that the farmer works a given
number of hours N each period.

Then the maximization problem turns out to be

max
C0,C1

U(C0,C1) = u(C0) + βu(C1),

s.t. C0 + K1 ≤ F(K0),
C1 + K2 ≤ F(K1),
0 ≤ C0,

0 ≤ C1,

0 ≤ K1,

0 ≤ K2.

Comparing with the prototype problem presented in T A.2 we may define that

x = (C0,C1,K1,K2),
f (C0,C1,K1,K2) = U(C0,C1),

n = 4

as well as the constraints

h1 = F(K0) −C0 − K1 ≥ 0,
h2 = F(K1) −C1 − K2 ≥ 0,
h3 = C0 ≥ 0,
h4 = C1 ≥ 0,
h5 = K1 ≥ 0,
h6 = K2 ≥ 0.

By T A.2 the first order conditions are

0 =
∂U
∂C0

+ λ1
∂h1

∂C0
+ . . . + λ6

∂h6

∂C0
=
∂U
∂C0
− λ1 + λ3, (4)

0 =
∂U
∂C1

+ λ1
∂h1

∂C1
+ . . . + λ6

∂h6

∂C1
=
∂U
∂C1
− λ2 + λ4, (5)

0 =
∂U
∂K1

+ λ1
∂h1

∂K1
+ . . . + λ6

∂h6

∂K1
= −λ1 + λ2F′(K1) + λ5, (6)

0 =
∂U
∂K2

+ λ1
∂h1

∂K2
+ . . . + λ6

∂h6

∂K2
= −λ2 + λ6, (7)
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as well as λi ≥ 0, ∀i ∈ {1, . . . , 6}. And complementary slackness gives λihi = 0, ∀i ∈
{1, . . . , 6}.

Now let’s try to simplify all the statements above. Knowing by Inada condition that

lim
ci→0

∂U
∂Ci

= +∞

we infer that C0 > 0 and C1 > 0. From complementary slackness one can directly see that
λ3 = λ4 = 0. Then by the strict concavity of U(·), ∂U

∂Ci
> 0. Therefore (4) (5) simply imply that

λ1 = ∂U
∂C0

> 0 and λ2 = ∂U
∂C1

> 0, as well as λ6 > 0 from (7) — this further implies that K2 = 0
by complementary slackness. And from h2 one can see that F(K1) ≥ C1 > 0, implying that
K1 > 0 as well as λ5 = 0. From (6) one can see that

F′(K1) =
λ1

λ2
=

∂U
∂C0

∂U
∂C1

.

This is just the Euler condition. With two other conditions h1 = 0 and h2 = 0 one can easily
solve for (C0,C1,K1).

  

0 C

Cଵ 

Budget Constraint 

Indifference Curve 

ܷ࢞ߘ ൌ  ࣅ

Fig. 1. S P

F 1 gives a graphical interpretation to this inequality constrained optimization problem
(one can find more theoretical arguments in Mas-Colell et al. (1995), C 2). The agent
maximizes her life-time utility by choosing the consumption level for each of the two periods,
on the basis of her intertemporal budget constraints. The optimum is achieved where the
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indifferent curve is exactly tangent to the frontier of the budget constraint. Suppose that we
relax the budget constraint by adding a little bit to it, the vector λ just describes by how much
the indifferent curve responds to the relaxation — in mathematical term, exactly the gradient
OxU as the graph shows.

2.2 The General Deterministic Finite Horizon Optimization Problems: From Lagrangian to
Hamiltonian

Let’s take a closer look at the structure of the problem in the example. What makes it in-
teresting is that the variables from the different periods are linked through the constraints
(otherwise we can solve the problem by simply repeating dealing with the insulated T + 1
static problems), therefore one variable’s change in one period may have pervasive effects into
the other periods. So one may wonder whether there exists a solution method by exploiting
such linkage — this is just the widely applied optimal control method.

As a general exposure, the prototype problem can be described as following. Think about the
simplest case with only two variables kt, ct in each period t ∈ {0, 1, . . . ,T }, T < +∞. The
problem is to maximize the object function U : R2(T+1) → R which is the summation of the
function u : R2 → R for each period, constrained by the intertemporal relations of k and c as
well as the boundary values

max
{ct}

U =

T∑
t=0

1
(1 + ρ)t u (kt, ct, t) ,

s.t. kt+1 − kt = g (kt, ct) ,
kt=0 = k0,

kT+1 ≥ kT+1.

k and c represent two kinds of variables. Variable kt is the one with which each period starts
and on which the decision is based, therefore it’s usually called state variable. And variable ct

is the one the decision maker can change in each period and what is left over is fed back into
the next period state variable, therefore it’s usually called control variable. The constraint
linking these variables across periods is called the law of motion.

If we express everything in continuous time, we only need to rewrite the summation by inte-
gration and the intertemporal change by the derivative with respect to time. However solving
the continuous time problems with the Lagrangian would be a bit tricky. And in order to give
the readers more exposures to the continuous time models, in the section that follows we start
with building up the foundations of finite horizon optimization problems in continuous time.
Readers may extend the same idea into the discrete time problems as an exercise.
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2.2.1 Continuous Time

Suppose that time is continous such that t ∈ [0,T ], T ≤ +∞. A typical deterministic continu-
ous time optimization problem can be written as (often people simply set k(T ) to be zero)

max
{c(t)}

U =

T∫
0

e−ρtu (k(t), c(t), t) dt,

s.t. k̇(t) = g (k(t), c(t), t) ,
k(0) = k0,

k(T ) ≥ k(T ).

Set up Lagrangian for this problem

L =

T∫
0

e−ρtu (k(t), c(t), t) dt +

T∫
0

µ(t)
(
g (k(t), c(t), t) − k̇(t)

)
dt + ν

[
k(T ) − k(T )

]
, (8)

and we are supposed to find the first order conditions with respect to k(t) and c(t). However
the second term in L involves k̇(t), and this make it difficult to derive it with respect to k(t).
Therefore we rewrite this term with integration by parts

T∫
0

µ(t)k̇(t)dt = µ(t)k(t)|T0 −

T∫
0

k(t)µ̇(t)dt

= µ(T )k(T ) − µ(0)k0 −

T∫
0

k(t)µ̇(t)dt.

Insert it back into Lagrangian, we get

L =

T∫
0

[
e−ρtu (k(t), c(t), t) + µ(t)g (k(t), c(t), t)

]
dt

−

µ(T )k(T ) − µ(0)k0 −

T∫
0

k(t)µ̇(t)dt

 + ν
[
k(T ) − k(T )

]
.

Define Hamiltonian function as

H(k, c, µ, t) = e−ρtu (k(t), c(t), t) + µ(t)g (k(t), c(t), t) , (9)
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then Lagrangian turns out to be

L =

T∫
0

[
H(k, c, µ, t) + k(t)µ̇(t)

]
dt − µ(T )k(T ) + µ(0)k0 + ν

[
k(T ) − k(T )

]
.

Now let k∗(t), c∗(t) be the optimal path for state and control variable. Define p1(t) as an arbi-
trary perturbation for c∗(t), then a neighbouring path around c∗(t) can be defined as

c(t) = c∗(t) + εp1(t).

Similarly define p2(t) as an arbitrary perturbation for k∗(t), then a neighbouring path around
k∗(t) can be defined as

k(t) = k∗(t) + εp2(t)

as well as the end-period state variable

k(T ) = k∗(T ) + εdk(T ).

Rewrite L in terms of ε

L ∗(·, ε) =

T∫
0

[
H(k(t, ε), c(t, ε), t) + k(t, ε)µ̇(t)

]
dt − µ(T )k(T, ε) + µ(0)k0 + ν

[
k(T, ε) − k(T )

]
and the first order condition must hold

∂L ∗(·, ε)
∂ε

∣∣∣∣∣
ε→0

= 0

=

T∫
0

[
∂H

∂ε
+ µ̇(t)

∂k
∂ε

]
dt + (ν − µ(T ))

∂k(T )
∂ε

.

By the chain rule

∂H

∂ε
=
∂H

∂k
∂k
∂ε

+
∂H

∂c
∂c
∂ε

=
∂H

∂k
p2(t) +

∂H

∂c
p1(t),

and insert it into the first order condition
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∂L ∗(·, ε)
∂ε

∣∣∣∣∣
ε→0

=

T∫
0

[
∂H

∂k
p2(t) +

∂H

∂c
p1(t) + µ̇(t)p2(t)

]
dt + (ν − µ(T )) dk(T )

=

T∫
0

[(
∂H

∂k
+ µ̇(t)

)
p2(t) +

∂H

∂c
p1(t)

]
dt + (ν − µ(T )) dk(T )

= 0.

Therefore the first order condition is equivalent to the following equations

∂H

∂c
= 0, (10)

∂H

∂k
=−µ̇(t), (11)

µ(T ) = ν. (12)

Since we assume that k∗(t), c∗(t) be the optimal path, then these conditions must hold. Condi-
tion (10) is called the Euler equation, and condition (11) is the Maximum Principle. Condi-
tion (12) requires that the terminal date costate variable, µ(T ), equal the terminal date static
Lagrange multiplier ν.

There is still something missing — Go back to the Lagrangian (8), we also have to address
the concern on complementary slackness regarding the terminal time capital constriant, i.e.

ν
[
k(T ) − k(T )

]
= 0 with ν ≥ 0.

Combining with condition (12) the complementary slackness is simply equivalent to

µ(T )
[
k(T ) − k(T )

]
= 0, (13)

which is often called transversality condition. The intuition behind it is pretty clear: If there is
strictly positive amount of more capital is left at the end date T than required, i.e. k(T )−k(T ) >
0, then its price must be zero, i.e. µ(T ) = 0, because it is worthless at all. On the other hand
if the capital stock at the end date has a strictly positive value, i.e. µ(T ) > 0, then the agent
must leave no excessive capital at all, i.e. k(T ) − k(T ) = 0.

Now the lengthy procedure which we went through simply tells us that one can actually start
from the Hamiltonian and directly arrive at the first order conditions. As a summary, to solve
the deterministic multi-period optimization problem the whole procedure can be simplified
into the following steps:

• Formulate the optimization problem as we did in the beginning of this section, and write
down its Hamiltonian as (9);
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• Derive the first order conditions regarding control and state variables respectively, such as
(10) and (11);

• Add the transversality condition such as (13);
• Make further treatments on these equations to get whatever you are interested in.

In addition, please note that the menu also works for the problems with more than one state
and / or control variables. The first order conditions are in the same forms as equations (10)
and (11), for control and state variables respectively.

2.2.2 Discrete Time

Since discrete time problems have the same nature as the ones for continuous time, therefore
here we simply present the results without going into the details of proofs.

A typical deterministic discrete time optimization problem can be written as

max
{ct}

U =

T∑
t=0

1
(1 + ρ)t u (kt, ct, t) ,

s.t. kt+1 − kt = g (kt, ct) ,
kt=0 = k0,

kT+1 ≥ kT+1.

Construct the present value Hamiltonian Ht = u (kt, ct, t) + λtg (kt, ct), and the first order
conditions are ∀t ∈ {0, 1, . . . ,T }

∂Ht

∂ct
= 0,

∂Ht

∂kt
=− (λt − λt−1) ,

∂Ht

∂λt
= kt+1 − kt,

as well as the complementary slackness such that λT ≥ 0 and λT

(
kT+1 − kT+1

)
= 0.

2.2.3 Present versus Current Value Hamiltonian

Often what we consider in economics is the optimization problem regarding a discounted
object function (in contrast to the prototype model by Ramsey), such as
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max
{c(t)}

U =

T∫
0

e−ρtu (k(t), c(t), t) dt,

s.t. k̇(t) = g (k(t), c(t), t) ,
k(0) = k0,

k(T ) − k(T ) ≥ 0

in which ρ is the discount rate. As we did in S 2.2.1 the present value Hamiltonian can
be expressed as

H = e−ρtu (k(t), c(t), t) + µ(t)g (k(t), c(t), t)

— notice that µ(t) is the present value shadow price, for it correspondents to the discounted
object function. Same as before, the first order conditions can be derived as equations (10)
and (11), plus the transversality condition (13).

Sometimes it’s convenient to study a problem in the current time terms, and people set up the
current value Hamiltonian as

Ĥ = u (k(t), c(t), t) + q(t)g (k(t), c(t), t)

in which q(t) = µ(t)eρt is the current value shadow price, for it correspondents to the non-
discounted object function. Now the first order conditions are slightly different in ∂Ĥ

∂k

∂Ĥ

∂c
= 0, (14)

∂Ĥ

∂k
= ρq(t) − q̇(t), (15)

as well as the transversality condition

q(T )e−ρt
[
k(T ) − k(T )

]
= 0. (16)

Although equation (15) is a little more complicated, it is very intuitive. Notice that ∂Ĥ
∂k is just

the marginal contribution of the capital to utility, i.e. the divident received by the agent, the
equation reflects the idea of asset pricing: given that q̇(t) is the capital gain (the change in
the price of the asset), and ρ is the rate of return on an alternative asset, i.e. consumption,
equation (15) says that at the optimum the agent is indifferent between the two types of the
investment, for the overall rate of return to the capital,
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∂Ĥ
∂k + q̇(t)

q(t)
,

equals the return to consumption, ρ. For this reason, equation (15) is also called non-arbitrage
condition.

3 Going Infinite: Something Rotten in Denmark

3 As a general principle we know that whenever one jumps into infinity there must be a
problem waiting for him or her. So what can go wrong, when we extend the results of finite
horizon optimization problems into the ones with infinite horizon?

The optimization itself is only a little different — T = +∞ in the object function

U =

+∞∫
0

e−ρtu (k(t), c(t), t) dt,

and there will be no terminal time condition any more, because the time doesn’t terminate at
all. But this makes a big change of the problem: Now the optimal time path looks like a kite
— we hold the thread at hand, but we don’t know where it ends.

Note that the principles behind the finite time optimization problem are that following the op-
timal time path nothing valuable is left over in the end of the world (such that µ(T )

[
k(T ) − k(T )

]
is non-positive) and the agent doesn’t exit the world with debt (such that µ(T )

[
k(T ) − k(T )

]
is

non-negative), which are captured in the transversality condition. To maintain the same prin-
ciples in the infinite time horizon, we may assume that there is an end of the world, but after
a nearly infinitely long time. Therefore we may impose a similar transversality condition for
the problems of infinite time horizon

lim
T→+∞

µ(T )
[
k(T ) − k(T )

]
= 0,

3 William Shakespeare (1602): Hamlet, Act 1, Scene 4
. . .
H
Have after. To what issue will this come?
M
Something is rotten in the state of Denmark.
H
Heaven will direct it.
. . .
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i.e. the value of the state variable must be asymptotically zero: If the quantity of k(T ) remains
different from the constraint asymptotically, then its price, µ(T ), must approach 0 asymptoti-
cally; If k(T )− k(T ) grows forever at a positive rate, then the price µ(T ) must approach 0 at a
faster rate so that the product, µ(T )

[
k(T ) − k(T )

]
, goes to 0.

However, such asymptotical transversality condition is not free from controversies (See Barro
and Sala-ı́-Martin (2004), A  M M A.2 and A.3). But for the
problems with discounted object functions (the form we take throughout this course), it is
sufficient for one to arrive at the correct solutions.

4 Example: Working with the Hamiltonian

In this section we rewrite the problem presented in C 2.1 – 2.2, Romer (2006) in
the framework of optimal control. Basically Romer attempts to solve the problem in a least
demanding approach such that readers can follow the reasoning with just the most elementary
knowledge of calculus. But this treatment comes with a price: The arguments there are pretty
tedious, sometimes confusing, and lack of strict proofs. Now by introducing the method of
optimal control, readers will see that everything becomes simple and straight forward.

You will learn later that this problem is equivalent to the following setup 4

max
{c(t),k(t)}+∞t=0

U =

+∞∫
0

e−ρt
[
A(0)egtc(t)

]1−θ

1 − θ
L(0)ent

H
dt,

s.t. k̇(t) = f (k(t)) − (n + g)k(t) − c(t),

in which the equation

k̇(t) = f (k(t)) − (n + g)k(t) − c(t) (17)

is the law of motion, and the parameters ρ, A(0), g, θ, L(0), n and H are constant.

Set up the present value Hamiltonian for this problem 5

H = e−ρt
[
A(0)egtc

]1−θ

1 − θ
L(0)ent

H
+ µ ( f (k) − (n + g)k − c) ,

the first order conditions are

4 Again here you don’t have to understand the economics behind. You may prove the equivalence
when you arrive at the Ramsey-Cass-Koopmans model in the lecture.
5 From now on we drop off the time variable t when there is no confusion.
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∂H

∂c
= e−ρt L(0)ent

H
[
A(0)egtc

]−θ A(0)egt − µ = 0, (18)

∂H

∂k
= µ

(
f ′(k) − (n + g)

)
= −µ̇ (19)

as well as the transversality condition

lim
T→+∞

µ(T )k(T ) = 0. (20)

Take logarithm on (18),

ln
{

e−ρt L(0)ent

H
[
A(0)egtc

]−θ A(0)egt

}
= ln µ,

−ρt + ln L(0) − ln H + nt − θ
[
ln A(0) + gt + ln c

]
+ ln A(0) + gt = ln µ,

then take derivatives with respect to t on both sides (note that c, k and µ are functions of t)

−ρ + n − θ
[
g +

ċ
c

]
+ g =

µ̇

µ
. (21)

Notice that (19) implies that

µ̇

µ
= −

(
f ′(k) − (n + g)

)
, (22)

combine (21) and (22) to get

−ρ + n − θ
[
g +

ċ
c

]
+ g = − f ′(k) + (n + g),

rearrange to get

ċ
c

=
f ′(k) − ρ − θg

θ
, (23)

which is just the Euler equation.

Further more, one can solve for the time path of µ from the ordinary differential equation (22)

µ(t) = µ(0) exp
[
−

(
f ′(k) − (n + g)

)
t
]
. (24)

Equation (24) determines the steady state value of k
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k∗ =
(
f ′
)−1 (ρ + θg). (25)

Insert (24) and (25) into the transversality condition (20)

lim
T→+∞

µ(0) exp
[
−

(
f ′(k(T )) − (n + g)

)
t
]
k(T )

= lim
T→+∞

µ(0) exp
[
− (ρ + θg − (n + g)) t

] (
f ′
)−1 (ρ + θg).

The equation above is asymptotically zero only if

ρ + θg − (n + g) > 0. (26)

Given (26) satisfied, the dynamics of the system are fully characterized by the equations (17)
and (23), which we’ll explore further in the next class.

5 Readings

Barro and Sala-ı́-Martin (2004), A MM A.2 and A.3.

6 Bibliographic Notes

Among the huge literature on intertemporal optimization problems, Chiang and Wainwright
(2005) and Dixit (1990) are distinguished by providing junior researchers a good balance
between both theoretical sufficiency and practical accessibility. Sundaram (1996) is based
on sound analytical foundations and perfect for the first course of mathematical economics.
Also it is much self-contained so that readers can work it throughout by timely referring to
Kolmogorov and Fomin (1970), or Rudin (1976). Chow (1997) is an interesting reading, by
showing that Lagrange method has a much wider range of applications than people usually
think and is even suitable for many occasions in which the popular approach of recursive
method fails to work. Kamien and Schwartz (1991) is the classic from the golden age of
dynamic control in economics and management science.

7 Exercises

7.1 Dynamic Optimization in Continuous Time

An individual receives a steady stream of income over time y(t). She maximizes her dis-
counted utility from consumption. Her intertemporal utility function is given by
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+∞∫
0

e−ρtU(t)dt with U(t) =
1
α

c(t)α

The consumer has access to a perfect capital market at which she can lend or borrow at an
interest rate r.

a) Give an interpretation of the parameter ρ. Calculate the elasticity of substitution between
consumption of two points in time and the rate of relative risk aversion.

b) What is the transition equation for consumer’s wealth?

c) Formulate the Hamiltonian of this problem and derive first order conditions.

d) Derive the Euler equation and show how consumption changes over time. Distinguish
two cases: a rate of time preference being lower / exceeding the rate of interest.

e) Let r = 0.1 and ρ = 0.2. Determine the optimal consumption path, if the present value of
the income stream is y0 = 100. Discuss the relation between the transversality condition and
the household’s intertemporal budget constraint.

7.2 Dynamic Optimization in Discrete Time

A representative consumer maximizes

u =

+∞∑
t=0

U(Ct)
1

(1 + ρ)t

subject to the per period budget constraint Bt+1 − Bt = Yt + rBt −Ct with B0 and {Yt}
+∞
t=0 given.

a) Derive the first order conditions and characterize the optimal consumption paths.

b) Explain the relation of this discrete time approach to the continuous time approach in the
previous exercise.

c) Using the No-Ponzi-Game condition, formulate the consumer’s intertemporal wealth con-
straint. Discuss the relation between the No-Ponzi-Game condition and the transversality
condition.

7.3 Euler Equation: A General Proof and Its Application

Consider the problem of finding a path x(t) that solves
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max
x(t)

b∫
a

F(t, x(t), x′(t))dt subject to x(a) = xa and x(b) = xb.

Show that the first order condition to this problem is given by the Euler equation

∂F
∂x

=
d ∂F
∂x′

dt
.

Using the result, find the Euler equation and the optimal path x(t) for

max
x(t)

T∫
0

(
(x′(t))2 + cx(t)

)
dt subject to x(0) = 0 and x(T ) = B.

7.4 Application of Dynamic Optimization in Growth Theory: Ramsey Model

An infinitely lived representative agent has the utility function

U0 =

+∞∫
0

e−ρt (c(t))β dt, 0 < β < 1.

The aggregate production function is Y = KαN1−α (0 < α < 1), in which K is capital input
and N is labor input. The growth rate of labor force is n, the rate depreciation of capital is δ.
Both rates are constant over time.

a) Show that the production function has constant returns to scale and formulate output per
capita (suppose that everyone in this economy provides a unit of labor force) as a function of
capital intensity (capital per capita).

b) Derive the transition equation for capital intensity.

c) Using the Hamiltonian, derive first order conditions of the agents optimization problem.

d) Derive the Euler equation for per capita consumption.

e) Calculate capital intensity and per capita consumption of the steady state.

f) Sketch the phase diagram and explain the optimal growth path from an arbitrary starting
value of capital intensity.
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g) How should the economy respond to a foreseeable change in the growth rate of labor
force? To put it clear, suppose the economy is already in the steady state at t0 with a constant
growth rate of labor force n0, and then for whatever reason it becomes public information at
t0 that from t1 in the future the growth rate of labor force will be n1 > n0, ∀t ∈ [t1,+∞). Using
phase diagram characterize the response of the economy from t0 on.
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Appendix

A Useful Results of Mathematics

A.1 The Theorem of Lagrange

Theorem A.1 Let f : Rn → R and gi : Rn → Rk be continuously differentiable functions,
∀i ∈ {1, . . . , k}. Suppose that x∗ is a local maximum or minimum of f on the set
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D = U ∩ {x|gi(x) = 0,∀i ∈ {1, . . . , k}} ,

in which U ⊆ Rn is open. Suppose also that rank (Dg(x∗)) = k. Then, there exists a vector
λ∗ =

(
λ∗1, . . . , λ

∗
k

)
∈ Rk such that

D f (x∗) +

k∑
i=1

λ∗i Dgi(x∗) = 0.

A.2 Kuhn-Tucker Theorem

Theorem A.2 Let f be a concave, continuously differentiable function mapping U into R,
where U ⊆ Rn is open and convex. For i = 1, . . . , l, let hi : U → R be concave, continuously
differentiable functions. Suppose there is some x ∈ U such that

hi(x) > 0, i = 1, . . . , l.

Then x∗ maximizes f over

D = {x ∈ U |hi(x) ≥ 0, i = 1, . . . , l}

if and only if there is λ∗ ∈ Rl such that the Kuhn-Tucker first-order conditions hold:

∂ f (x∗)
∂x j

+

j∑
i=1

λ∗i
∂hi(x∗)
∂x j

= 0, j = 1, . . . , n,

λ∗i ≥ 0, i = 1, . . . , l,
λ∗i hi(x∗) = 0, i = 1, . . . , l.

A.3 Miscellaneous

Integration by Parts Suppose that u(x) and v(x) are both functions of x and differentiable
for x ∈ [a, b]. Then by the product rule of differentiation

d [u(x)v(x)] = v(x)du(x) + u(x)dv(x).

Then integrate both sides on [a, b] and get

b∫
a

u(x)dv(x) = u(x)v(x)|ba −

b∫
a

v(x)du(x).
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