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Abstract

Traditionally, aggregate liquidity shocks are modeled as exogenous events. This paper

analyzes the adequate policy response to endogenous exposure to systemic liquidity risk.

We analyze the feedback between lender of last resort policy and incentives of private

banks, determining the aggregate amount of liquidity available. We show that imposing

minimum liquidity standards for banks ex ante is a crucial requirement for sensible lender

of last resort policy. In addition, we analyze the impact of equity requirements and narrow

banking, in the sense that banks are required to hold sufficient liquid funds so as to pay out

in all contingencies. We show that both policies are strictly inferior to imposing minimum

liquidity standards ex ante combined with lender of last resort policy.
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The events earlier this month leading up to the acquisition of Bear Stearns by

JP Morgan Chase highlight the importance of liquidity management in meeting

obligations during stressful market conditions. ... The fate of Bear Stearns was

the result of a lack of confidence, not a lack of capital. ... At all times until its

agreement to be acquired by JP Morgan Chase during the weekend, the firm

had a capital cushion well above what is required to meet supervisory standards

calculated using the Basel II standard.

— Chairman Cox, SEC, Letter to Basel Committee in Support of New Guidance

on Liquidity Management, March 20th, 2008

Bear Stearns never ran short of capital. It just could not meet its obligations. At

least that is the view from Washington, where regulators never stepped in to force

the investment bank to reduce its high leverage even after it became clear Bear

was struggling last summer. Instead, the regulators issued repeated reassurances

that all was well. Does it sound a little like a doctor emerging from a funeral to

proclaim that he did an excellent job of treating the late patient?

— Floyd Norris, New York Times, April 4th, 2008

1 Introduction

Before the financial crisis, financial markets seemed to have been awash with

excessive liquidity. But suddenly, in August 2007, liquidity dried up nearly com-

pletely as a response to doubts about the quality of subprime mortgage-backed

securities. Despite massive central bank interventions, the liquidity freeze did not

melt away, but rather spread slowly to other markets such as those for auction rate

bonds. On March 16th 2008, the investment bank Bear Sterns which — according

to the SEC chairman — was adequately capitalized even a week before had to be

rescued via a Fed-led takeover by JP Morgan Chase.

Following the turmoil on financial markets, there has been a strong debate about

the adequate policy response. Some have warned that central bank actions may

encourage dangerous moral hazard behaviour of market participants in the future.

Others instead criticized central banks for responding far too cautiously. The most

prominent voice has been Willem Buiter who — jointly with Ann Sibert — right
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from the beginning of the crisis in August 2007 strongly pushed the idea that in

times of crises, central banks should act as market maker of last resort. As an adap-

tation of the Bagehot principles to modern times with globally integrated financial

systems, central banks should actively purchase and sell illiquid private sector se-

curities and so play a key role in assessing and pricing credit risk. In his FT blog

“Maverecon”, Willem Buiter stated the intellectual arguments behind such a policy

very clearly on December 13th, 2007:

“Liquidity is a public good. It can be managed privately (by hoarding inherently

liquid assets), but it would be socially inefficient for private banks and other

financial institutions to hold liquid assets on their balance sheets in amounts

sufficient to tide them over when markets become disorderly. They are meant to

intermediate short maturity liabilities into long maturity assets and (normally)

liquid liabilities into illiquid assets. Since central banks can create unquestioned

liquidity at the drop of a hat, in any amount and at zero cost, they should be

the liquidity providers of last resort, both as lender of last resort and as market

maker of last resort. There is no moral hazards as long as central banks provide

the liquidity against properly priced collateral, which is in addition subject to

the usual ‘liquidity haircuts’ on this fair valuation. The private provision of the

public good of emergency liquidity is wasteful. It’s as simple as that.”

Buiter’s statement represents the prevailing main stream view that there is no

moral hazard risk as long as the Bagehot principles are followed as best practice in

liquidity management.

According to Goodfriend & King (1988), a lender of last resort policy should

target liquidity provision to the market, but not to specific banks. Central banks

should “lend freely at a high rate against good collateral.” This way, public liq-

uidity support is supposed to be targeted towards solvent yet illiquid institutions,

since insolvent financial institutions should be unable to provide adequate collateral

to secure lending. This paper wants to challenge the view that a policy following

the Bagehot principle does not create moral hazard. The key argument is that this

view neglects the endogeneity of aggregate liquidity risk. Starting with Allen &

Gale (1998) and Holmström & Tirole (1998), there have been quite a few models

recently analyzing private and public provision of liquidity. But in most of these

models, exposure to aggregate systemic risk is assumed to be exogenous.
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In Holmström & Tirole (1998), for instance, liquidity shortages arise when fi-

nancial institutions and industrial companies scramble for and cannot find the cash

required to meet their most urgent needs or undertake their most valuable projects.

They show that credit lines from financial intermediaries are sufficient for imple-

menting the socially optimal (second-best) allocation, as long as there is no aggre-

gate uncertainty. In the case of aggregate uncertainty, however, the private sector

cannot satisfy its own liquidity needs, so the existence of liquidity shortages vindi-

cates the injection of liquidity by the government. In their model, the government

can provide (outside) liquidity by committing future tax income to back up the

reimbursements.

In the model of Holmström & Tirole (1998), the lender of last resort indeed

provides a free lunch: Public provision of liquidity in the presence of aggregate

shocks is a pure public good, with no moral hazard involved. The reason is that

the probability for being hit by an aggregate shock is not affected by the amount

of investment in liquid assets carried out by the private sector. The same holds in

Allen & Gale (1998), even though they analyze a quite different mechanism for

public provision of liquidity: the adjustment of the price level in an economy with

nominal contracts. We adopt Allen & Gale’s mechanism, but we endogenize the

exposure of financial intermediaries to aggregate (systemic) liquidity risk.

The basic idea of our model is fairly straightforward: Financial intermediaries

choose the share invested in projects which might turn out to be illiquid. We model

(real) illiquidity in the following way: Some fraction of those projects turns out to

be realized late. The aggregate share of late projects is endogenous; since it depends

on the incentives of financial intermediaries to invest in those illiquid projects.

When intermediaries would invest only in liquid assets, they would never be hit by

shocks affecting illiquid projects. The larger the share invested in those assets, how-

ever, the higher the exposure to aggregate liquidity risk. This endogeneity allows

us to capture the feedback from liquidity provision to risk taking incentives of fi-

nancial intermediaries. We show that the share invested in illiquid projects rises en-

dogenously with central bank liquidity provision: The anticipation of unconditional

central bank liquidity provision encourages excessive risk taking (moral hazard). It

turns out that in the absence of liquidity requirements, there will be overinvestment

in risky activities, creating excessive exposure to systemic risk.
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In contrast to what the Bagehot principle suggests, unconditional provision of

liquidity to the market (lending of central banks against good collateral) is exactly

the wrong policy: It distorts incentives of banks to provide sufficient private liquid-

ity, thus reducing investors’ payoff. In our model, we concentrate on pure illiquidity

risk: There will never be insolvency unless triggered by illiquidity (by a bank run).

Illiquid projects promise a higher, yet possibly delayed return. Relying on sufficient

liquidity provided by the market (or by the central bank), financial intermediaries

are inclined to invest more heavily in high yielding, but illiquid long term projects.

Central bank’s liquidity provision, helping to prevent bank runs with inefficient

early liquidation, encourages banks to invest more in illiquid assets. At first sight,

this seems to work fine, even if systemic risk increases: After all, public insurance

against aggregate risks should allow agents to undertake more profitable activities

with higher social return. As long as public insurance is a free lunch, there is noth-

ing wrong with providing such a public good.

The problem, however, is that due to limited liability some banks will be encour-

aged to free-ride on liquidity provision. This competition will force the other banks

to reduce their efforts for liquidity provision, too. Chuck Prince, at that time chief

executive of Citigroup, stated the dilemma posed in fairly poetic terms on July 10th

2007 in an infamous interview with Financial Times 1 :

“When the music stops, in terms of liquidity, things will be complicated. But as

long as the music is playing, you’ve got to get up and dance. We’re still dancing.”

The dancing banks simply enjoy liquidity provided in good states of the world

and just disappear (go bankrupt) in bad states. The incentive of financial interme-

diaries to free-ride on liquidity in good states results in excessively low liquidity

in bad states. Even worse: As long as they do not suffer runs, “dancing” banks can

1 The key problem is best captured by the following remark about Citigroup in the New

York Times report “Treasury Dept. Plan Would Give Fed Wide New Power” on March

29th, 2008: “Mr. Frank said he realized the need for tighter regulation of Wall Street firms

after a meeting with Charles O. Prince III, then chairman of Citigroup. When Mr. Frank

asked why Citigroup had kept billions of dollars in ‘structured investment vehicles’off the

firm’s balance sheet, he recalled, Mr. Prince responded that Citigroup, as a bank holding

company, would have been at a disadvantage because investment firms can operate with

higher debt and lower capital reserves.”
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always offer more attractive collateral in bad states — so they are able to outbid

prudent banks in a liquidity crisis. For that reason, the Bagehot principle, rather

than providing correct incentives, is the wrong medicine in modern times with a

shadow banking system relying on liquidity being provided by other institutions.

This paper extends a model developed in Cao & Illing (2008). In that paper

we did not allow for banks holding equity, so we could not analyze the impact of

equity requirements. As we will show, imposing equity requirements can be inferior

even to the outcome of a mixed strategy equilibrium with free-riding (dancing)

banks. In contrast, imposing binding liquidity requirements ex ante combined with

lender of last resort policy ex post is able to implement the second best outcome.

In our model, it yields a strictly superior outcome compared to imposing equity

requirements. We also prove that “narrow banking” (banks being required to hold

sufficient equity so as to be able to pay out demand deposits in all states of the

world) is inferior to ex ante liquidity regulation.

Allen & Gale (2007, p 213f) notice that the nature of market failure leading to

systemic liquidity risk is not yet well understood. They argue that “a careful analy-

sis of the costs and benefits of crises is necessary to understand when intervention

is necessary.” In this paper, we try to fill this gap, providing a cost / benefit analysis

of different forms of banking regulation to better to understand what type of inter-

vention is required. We explicitly compare the impact both of liquidity and equity

requirements. To the best of our knowledge, this is the first paper providing such

an analysis.

The paper is organized as follows. In S 2, we present the structure of the

model with real deposit contracts and characterize the central planner’s constrained

efficient solution and the market equilibrium. In S 3 we introduce a central

bank, and show that in an economy with nominal deposit contracts, lender of last

resort policy eliminates bank runs, but is subject to the time inconsistency problem.

We show that ex ante liquidity regulation, combined with lender of last resort policy

can implement the constrained efficient solution. The effectiveness of imposing

equity requirements is analyzed in S 4. S 5 concludes.
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2 The structure of the model

2.1 The agents, time preferences, and technology

In this economy, there are three types of agents: investors, banks (run by bank

managers) and entrepreneurs. All agents are risk neutral. The economy extends

over 3 periods, t = 0, 1, 2, and the details of timing will be explained later. We

assume that

(1) There is a continuum of investors each initially (at t = 0) endowed with one

unit of resources. The resource can be either stored (with a gross return equal

to 1) or invested in the form of bank deposits;

(2) There are a finite number N of active banks engaged in Bertrand competition,

competing for investors’ deposits. Using these deposits, the banks as financial

intermediaries can fund projects of entrepreneurs;

(3) There is a continuum of entrepreneurs. There are two types of them (denoted

by i, i = 1, 2), characterized by their project returns Ri

• Projects of type 1 (safe projects) are realized early at period t = 1 with a

safe return R1 > 1;

• Projects of type 2 (risky projects) give a higher return R2 > R1 > 1. With

probability p, these projects will also be realized at t = 1, but they may be

delayed (with probability 1 − p) until t = 2. Therefore, in the aggregate,

the share p of type 2 projects will be realized early. The aggregate share p,

however is not known at t = 0. It will be only revealed between periods 0

and 1 at some intermediate period, call it t = 1
2 . In the following, we are

interested in the case of aggregate shocks. We model them in the simplest

way: The aggregate share of type 2 projects realized early, p, can take on just

two values: either pH or pL with pH > pL. The “good” state with a high share

of early type 2 projects pH, i.e., the state with plenty of liquidity, will be

realized with probability π. In the following, we assume that 1 < psR2 < R1

(s ∈ {H, L}) to focus on the relevant case (to be explained later).

Investors are impatient: They want to consume early (at t = 1). In contrast, both

entrepreneurs and bank managers are indifferent between consuming early (t = 1)
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or late (t = 2).

Focusing on the case of liquidity constraints being binding, we assume that re-

sources of investors are scarce in the sense that there are more projects of each type

available than the aggregate endowment of investors. Thus, in a first best market

economy (in the absence of commitment problems as explained in the next para-

graph), total surplus would go to the investors. They would simply put all their

funds in early projects and capture the full return. We take this frictionless mar-

ket outcome as our reference point and seek to minimize the distance in terms of

the investors’ welfare between this reference point and the equilibrium outcome un-

der various policies. Hold up problems prevent realization of the frictionless market

outcome, creating a demand for liquidity. Since there is a market demand for liquid-

ity only if investors’ funds are the limiting factor, we choose the investors’ payoff

as the policy maker’s objective and concentrate on deviations from this market out-

come. With investors’ payoff as the relevant criterion, we analyze those equilibria

coming closest to implementing the frictionless market outcome.

Due to hold up problems as modeled in Hart & Moore (1994), or Holmström

& Tirole (1997), entrepreneurs can only commit to pay a fraction γ < 1 of their

return with γRi > 1. Banks as financial intermediaries can pool investment; they

have superior collection skills (a higher γ, which justifies their role as intermedi-

aries). In the following, we also assume that ps ≤ γ (s ∈ {H, L}) to concentrate on

the relevant case that investors care about investment in liquid projects (see S

2.4). Following Diamond & Rajan (2001), banks offer deposit contracts with a fixed

payment d0 payable at any time after t = 0 as a credible commitment device not

to abuse their collection skills. The threat of a bank run disciplines bank managers

to fully pay out all available resources pledged in the form of bank deposits. De-

posit contracts, however, introduce a fragile structure into the economy: Whenever

investors have doubts about their bank’s liquidity (the ability to pay investors the

promised amount d0 at t = 1), they run on the bank at the intermediate date, forcing

the bank to liquidate all its projects (even those funding entrepreneurs with safe

projects) at high costs: Early liquidation of projects gives only the inferior return

c < 1. In the following, we do not consider pure sunspot bank runs of the Diamond

& Dybvig type. Instead, we concentrate on the runs happening if liquid funds are

not sufficient to payout investors.
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2.2 Timing and events

At date t = 0, banks competing for funds offer deposit contracts with payment

d0 which maximize expected return of investors. Banks compete by choosing the

share α of deposits invested in type 1 projects, taking their competitors’ choice as

given. Investors have rational expectations about each bank’s default probability;

they are able to monitor all banks’ investment. Remember that, at this stage, the

share p of type 2 projects that will be realized early is not yet known.

At date t = 1
2 , the value of p is revealed, so is the expected return of the banks at

t = 1. A bank will experience a run if it cannot meet the investors’ demand. If this

happens, all the assets — even the safe projects — have to be liquidated.

Those banks which do not suffer a run trade with early entrepreneurs in a per-

fectly competitive market for liquidity at t = 1, clearing at interest rate r. Note that

because of the hold up problem, entrepreneurs retain a rent — their share (1− γ)Ri.

Since early entrepreneurs are indifferent between consuming at t = 1 or t = 2,

they are willing to provide liquidity (using their rent to deposit at banks at t = 1

at the market rate r). Banks use the liquidity provided to pay out investors. In this

way, impatient investors can profit indirectly from the investment in high yielding

long term projects. So banking allows the transformation between liquid claims and

illiquid projects.

At date t = 2, the banks collect the return from the late projects and pay back the

early entrepreneurs at the predetermined interest rate r.

Note that the aggregate liquidity available at date t = 1 depends on the total share

of funds, α, invested in liquid type 1 projects at date t = 0. As long as the banks

are liquid, the payoff structure is described as in F 1. But if α is so low that

the banks cannot honor deposits when pL occurs, investors will run at t = 1
2 . The

payoff in that case is captured in F 2.
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Fig. 1. Timing and payoff structure, when banks are liquid
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Fig. 2. Timing and payoff structure, when banks are illiquid

2.3 The central planner’s constrained efficient solution

We first analyze the problem of a central planner maximizing the investors’ pay-

off. This provides the reference point for the market equilibrium with banks as fi-

nancial intermediaries characterized in the next section. Investors being impatient,

the central planner would choose the share invested in illiquid projects so as to

maximize the resources available to investors at period 1. Since psR2 < R1, in the

absence of hold up problems, he would invest only in liquid type 1 projects, this

way maximizing resources available at period 1. But due to the hold-up problem

caused by entrepreneurs, the central planer can implement only a constrained ef-

ficient solution. If the central planner had unlimited taxation authority, he could

eliminate the hold-up problem completely by taxing the entrepreneurs’ rent and re-

distributing the resources to the investors. Again, all resources would be invested

only in liquid type 1 projects, and the entrepreneurs’ rents would be transferred to
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the investors in period 1.

Obviously, allowing for non-distortionary taxation biases the comparison be-

tween market and planner’s solution, giving the planner an unfair advantage. Effec-

tively, redistribution via lump-sum taxation would make both hold-up and liquidity

constraints non-binding, assuming the relevant issues away. To make the planners’

constrained optimization problem interesting, we assume that non-distortionary

taxation is not feasible in period 1. In order to impose sensible restrictions, we

take private endowments as a binding constraint and assume that the entrepreneur

has to receive an equivalent compensation when he is asked to give up resources in

period 1. Being indifferent between consuming at t = 1 and t = 2, he needs to be

compensated by an appropriate transfer in period 2. In order not to distort the com-

parison in favour of banks, we furthermore assume that the planner has the same

collection skills (the same γ) as financial intermediaries.

Given these constraints, the constrained efficient solution is characterized in the

following proposition:

Proposition 2.1 The optimal solution for the central planner’s problem is:

(1) If there is no aggregate risk, i.e., when ps is known at t = 0, the planner invests

the share αs =
γ−ps

γ−ps+(1−γ) R1
R2

(s ∈ {H, L}) in liquid projects and the investors’

return is maximized at γE[Rs] = γ[αsR1 + (1 − αs)R2];

(2) In the presence of aggregate risk, the central planner implements the following

state contingent strategy, depending on the probability π for pH being realized:

The planner invests the share αH in liquid projects as long as π′2 =
γE[RL]−κ
γE[RH]−κ ≤

π ≤ 1 with κ = αHR1+(1−αH)pLR2, and the share αL > αH for 0 ≤ π < π′2. 2

Proof See A A.1. 2

The first part of the proposition says that if p is known the planner simply

chooses α so as to maximize the investors’ return. The second part says that if

p is unknown the planner faces a tradeoff: the investors’ return is maximized under

pH if the planner chooses αH, but will be low if pL is realized; the investors’ return

is maximized under pL if the planner chooses αL, but will be low if pH is realized.

So the optimal solution depends on the likelihood of pH, that is, on π. When π is

high enough, the planner will choose αH; otherwise he will pick αL.
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Obviously, hold-up and liquidity constraints are bound to have a distributional

impact: If resources were taken away from investors in the initial period and redi-

rected towards type 2 entrepreneurs, the commitment problem would no longer be

relevant, neither would the need for liquidity provision. Even though such a reallo-

cation would result in higher aggregate resources (all funds being invested in high

return projects), it would yield inferior payoff to investors. Since psR2 < R1, in-

vesting less than αs in liquid projects reduces resources available in period 1 and

so makes investors worse off.

In contrast to our modeling strategy, Holmström & Tirole (1998) assume that

the lender of last resort has unlimited power to tax real resources and so is always

able to redistribute resources ex post. This assumption, however, effectively makes

liquidity constraints non-binding: The central planner can always redistribute re-

sources ex post in such a way as to make them irrelevant. The planner could simply

redirect resources to the constrained agents (and potentially compensate the uncon-

strained). Interestingly, in our model, giving the planner taxation power in period

2 cannot help to improve upon the investors’ allocation: The investors being impa-

tient, any redistribution from illiquid projects realized late at t = 2 is simply not

feasible.

2.4 The market equilibrium

Let us now characterize the market equilibrium with banks as financial interme-

diaries. First, let us again start with the simplest case with no aggregate uncertainty,

i.e., the share p of type 2 projects realized early is known at t = 0. The mar-

ket equilibrium of the model is characterized by bank i’s strategic profile (αi, d0i),

∀i ∈ {1, ...,N} such that

• Bank i’s profit is maximized by

αi = arg max
αi∈[0,1]

γ

{
αiR1 + (1 − αi)

[
pR2 +

(1 − p)R2

r

]}
. (1)

Bank i chooses the share of liquid projects αi so as to maximize expected dis-

counted returns;

• Bank i makes zero profit from offering deposit contract d0i
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d0i = max
αi∈[0,1]

γ

{
αiR1 + (1 − αi)

[
pR2 +

(1 − p)R2

r

]}
. (2)

Investors deposit their funds at those banks offering the highest return. Thus,

with Bertrand competition in the deposit market, the deposit rate d0i offered to

investors in equilibrium will be equal to expected returns, maximizing resources

available at period 1;

• The market interest rate is determined in the following way

(1) In equilibrium, all resources available at t = 1 will be paid out to investors, so

d0i = αiR1 + (1−αi)pR2. Banks receive funds γ[αiR1 + (1−αi)pR2] from those

projects realized early. In addition, early entrepreneurs are willing to provide

liquidity at t = 1 (depositing their rent at the market rate r ≥ 1) to solvent

banks who are able to meet their liabilities to the investors, that is, to banks

with d0i ≤ γ
{
αiR1 + (1 − αi)

[
pR2 +

(1−p)R2
r

]}
. So the liquidity supplied by early

entrepreneurs is (1−γ)[αiR1 + (1−αi)pR2] as long as bank i is expected to stay

solvent, that is as long as it is able to pay out early entrepreneurs at the market

rate r at t = 2 from its late project’s return γ(1 − αi)(1 − p)R2.

Furthermore, as the market clearing condition, aggregate liquidity supply

and demand at t = 1 have to be equal, given that banks stay solvent at the

interest rate r ≥ 1:
∑N

i=1 r(1− γ)[αiR1 + (1−αi)pR2] =
∑N

i=1 γ(1−αi)(1− p)R2;

(2) Finally, when there is excess liquidity supply at t = 1, i.e., when total interme-

diate output exceeds the payoff promised to the investors, r = 1.

If there is no aggregate uncertainty the market equilibrium with r = 1 is equiva-

lent to the solution of the social planner’s problem: Banks will invest such that —

on aggregate — they are able to fulfill investors’ claims in period 1, so there will

be no run.

Proposition 2.2 If there is no aggregate uncertainty the allocation in the market

equilibrium with r = 1 is identical to the solution of the social planner’s problem,

characterized by

• All banks set α =
γ−p

γ−p+(1−γ) R1
R2

;

• The market interest rate r = 1. 2

Proof See A A.2. 2
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The proposition says that in the absence of aggregate uncertainty the banks will

choose α (the share invested in liquid projects) so as to maximize depositor’s return

and to stay solvent at t = 1, given that entrepreneurs are willing to provide liquidity

at that time. This coincides with the solution of the social planner’s problem. Since

R1 > pR2 and γ > p, α will be strictly positive in equilibrium. For given p, there is

a unique α maximizing resources available for investors at t = 1. A bank investing

less than this value of α would not be able to pay out the amounts promised to

investors at t = 1 and thus would experience a run at t = 1
2 . A bank investing

more than α would be outbid by competitors offering a higher d0i. Note that α is

decreasing in p: The larger the share p of type 2 projects realized early, the less need

for investment in liquid type 1 projects. For p > γ, liquid projects are dominated by

the risky ones, so there would be no demand for liquid projects at t = 0. Similarly,

there would be no demand for liquid projects at t = 0 either when R1 < pR2. Since

liquidity is not an issue for these cases, they are ruled out by assumption.

It becomes tricky to find the market equilibrium when there is aggregate uncer-

tainty. Let us briefly sketch the market equilibrium in the following proposition:

Proposition 2.3 When there is aggregate uncertainty

(1) There is a symmetric pure strategy equilibrium such that all banks set α = αH

for all π2 < π ≤ 1 with π2 =
γE[RL]−c
γE[RH]−c and E[Rs] = αsR1+(1−αs)R2 (s ∈ {H, L});

(2) There is a symmetric pure strategy equilibrium such that all banks set α = αL

for all 0 ≤ π < π1 with π1 =
γE[RL]−c
γR2−c ;

(3) There exists no symmetric pure strategy equilibrium for all π1 ≤ π ≤ π2.

However, there exists a unique equilibrium in mixed strategies such that

(a) At t = 0, with probability θ a bank chooses to be a free-riding bank who

sets α = 0 and with probability 1− θ a bank chooses to be a prudent bank

who sets 0 < α∗s < αL;

(b) In the mixed strategy equilibrium, investors are worse off than if all banks

would coordinate on the prudent (non-equilibrium) strategy αL. 2

Proof See A A.3. 2

The intuition behind P 2.3 is as follows: With uncertainty about p a

bank seems to have just two options available: It may either invest so much in safe
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type 1 projects (αL) that it will be able to pay out the investors all the time (that

is, even if the bad state occurs), or it may invest just enough, αH, so as to pay out

investors only in the good state and experience a run in the bad state. If π is very

high (close to 1), a bank should choose αH — to reap the high yields in the good

state, since the cost of the bank run in the bad state is rather low. Alternatively,

if π is very low (close to 0), it always pays to be prepared for the worst case, so

the bank should choose αL > αH in safe projects. Since αs (s ∈ {H, L}) is the

share invested in safe projects with return R1, the total payoff by choosing αs is

E[Rs] = αsR1 + (1 − αs)R2 with E[RH] > E[RL].

With a high share αL of safe projects, the banks will be able to pay out investors

in all states. There will never be a bank run. So independent of π, the expected

payoff for investors is γE[RL]. In contrast, with strategy αH there will be a bank run

in the bad state, giving just the bankruptcy payoff c with probability 1 − π. So the

return to strategy αH is πγE[RH] + (1 − π)c, which is increasing in π. Investors get

a higher payoff under αH, if πγE[RH] + (1 − π)c > γE[RL] or

π > π2 =
γE[RL] − c
γE[RH] − c

.

For π < π2, the investors’ payoff is higher with strategy αL. But if all banks

would choose strategy αL, there will be excess liquidity at t = 1 if the good state

occurs (with a large share of type 2 projects realized early). A bank anticipating

this event has a strong incentive to invest all funds in type 2 projects, reaping the

benefit of excess liquidity in the good state. As long as the music is playing, such

a deviating bank gets up and dances. In the good state, such free-riding bank can

credibly rely on entrepreneurs’ excess liquidity at t = 1, promising to pay back

at t = 2 out of highly profitable projects. After all, at that stage, this bank, free-

riding on liquidity, can offer a capital cushion with expected returns well above

what prudent banks are able to promise. Of course, if the bad state happens, there

is no excess liquidity. Liquidity dries up. The free-riding banks would just bid up

the interest rates, urgently trying to get funds. Rational investors, anticipating that

these banks will not succeed, will have already triggered a bank run on these banks

at t = 1
2 .
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As long as the free-riding banks are not supported in the bad state, they are driven

out of the market, providing just the return c. Nevertheless, these banks can offer

the return πγR2 + (1−π)c as expected payoff for investors. Thus, a free-riding bank

will be able to offer a higher expected return than a prudent bank provided the

probability π for the good state is not too low. The condition is

π > π1 =
γE[RL] − c
γR2 − c

.

Since R2 > E[RH], it pays to free-ride within the range π1 ≤ π < π2.

Obviously, there cannot be an equilibrium in pure strategies within that range. As

long as the music is playing, all banks would like to “get up and dance.” But then,

there would be no prudent bank left providing the liquidity needed to be able to

free-ride. In the resulting mixed strategy equilibrium, a proportion of banks behave

prudently, investing some amount α∗s < αL in liquid assets, whereas the rest free-

rides on liquidity in the good state, choosing α = 0. Prudent banks reduce α in

order to cut down the opportunity cost of investing in safe projects. Interest rates

and α∗s adjust so that investors are indifferent between the two types of banks. At t =

0, both prudent and free-riding banks offer the same expected return to investors.

The proportion of free-riding banks is determined by aggregate market clearing

conditions in both states. Free-riding banks experience a run for sure in the bad

state, but the high return in the good state R2 compensates investors for that risk.

As shown in P 2.3, free-riding drives down the return for investors.

They are definitely worse off than they would be if all banks coordinated on the

prudent strategy αL — similar to the inefficient mixed strategy equilibrium in Allen

& Gale (2004). The solid grey curves in F 3 illustrates the investors’ expected

return in the market equilibrium, as a result of free-riding behaviour the effective re-

turn on deposits for investors deteriorates in the range π1 ≤ π < π2, compared with

the outcome if all banks would coordinate (off equilibrium) on αL as the dashed

grey line shows.

Compared to the central planner’s solution (the solid black line in F 3), the

investor’s payoff is lower in the market equilibrium with banks as financial inter-

mediaries for two different reasons: First, free-riding banks reduce the investor’s

payoff in the mixed strategy equilibrium in the intermediate case. Second, for high
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Fig. 3. Investors’ expected return under free riding compared to the case of no free-riding

and the central planner’s solution

values of π (π2 < π ≤ 1), a representative bank, choosing αH, accepts the risk of

a bank run if the bad state occurs (with a low share pL of illiquid projects real-

ized early). If that state occurs, a bank run is triggered with inefficient liquidation,

resulting in an inferior payoff c < 1. In the following sections, we will carefully

analyze how different mechanism designs may help to raise the investor’s payoff,

bringing the market outcome closer to the constrained efficient solution as stated in

S 2.3. In the next section, we show that in an economy with nominal deposit

contracts, lender of last resort policy is able to tackle the problem of bank runs, but

at the same time aggravates bank’s incentives for free riding.

3 Lender of last resort policy

3.1 Nominal contracts and the lender of last resort

A lender of last resort, usually the central bank, cannot create real liquidity in

period one. But a central bank can add nominal liquidity at the stroke of a pen.

Following Allen & Gale (1998) and Diamond & Rajan (2006), assume from now

on that deposit contracts are arranged in nominal terms. The bail-out mechanism
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of the central bank is similar to that in Allen, Carletti, & Gale (2010). Here is the

timing of the model:

(1) At t = 0 the banks provide nominal deposit contracts to investors, promising

a fixed nominal payment d0 at t = 1. The central bank announces a minimum

level α of investment on safe projects, and only those banks who meet the

requirement will be eligible for liquidity support in the time of a crisis;

(2) At t = 1
2 the banks decide whether to borrow liquidity from the central bank. If

yes, the central bank will provide liquidity for the banks, provided they fulfill

the requirement α;

(3) At t = 1, the liquidity injection with the banks’ illiquid assets as collateral is

carried out so that the banks are able to honor their nominal contracts, which

reduces the real value of deposits just to the amount of real resources available

at that date;

(4) At t = 2 the banks repay the central bank using the returns from the late

projects, with gross nominal interest rate rM agreed at t = 1.

As a new element in this extended model, we allow the central bank to impose

minimal liquidity holdings in addition to lender of last resort policy as a way to

implement the allocation maximizing the investors’ payoff.

3.2 Liquidity regulation and lender of last resort policy

With nominal contracts, the central bank’s optimal policy as lender of last resort

can be summarized in the following proposition.

Proposition 3.1 With nominal contracts, the central bank can act as lender of last

resort. The central bank’s optimal policy that maximizes the investors’ return is

(1) Set α = αH for all π ∈ [π′2, 1], where π′2 =
γE[RL]−κ
γE[RH]−κ < π2 and κ = αHR1 + (1 −

αH)pLR2;

(2) Set α = αL for all π ∈ [0, π′2);

(3) Set rM = 1.

What’s more, under such a policy bank runs are eliminated for the eligible banks,

i.e., the eligible banks will not experience runs when pL is revealed. 2
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Proof See A A.4. 2

The investors’ return is maximized, when the banks get liquidity injection at the

lowest cost, the central bank setting rM = 1. With liquidity injection, bank runs

are prevented when the bad state (with low payoffs at t = 1) occurs. Essentially,

nominal deposits allow the central bank to implement state contingent payoffs, and

such a policy replicates the optimal allocation in the central planner’s problem.

This argument seems to confirm the view that the lender of last resort can indeed

provide a free lunch, delivering a public good at no cost. It turns out, however, that

the anticipation of these actions has an adverse impact on the amount of aggregate

liquidity provided by the private sector, affecting endogenously the exposure to

systemic risk.

Proposition 3.2 Assume that a market equilibrium exists, i.e., πpHR2+(1−π)pLR2 ≥

1. If the central bank is willing to provide liquidity to the entire market in times of

crisis, all banks have an incentive to free-ride, choosing α = 0 and investors are

made worse off. 2

Proof See A A.5. 2

The reason for this surprising result is the following: If the central bank targets

liquidity provision to the market instead of to specific banks, the optimal policy as

stated by P 3.1 is not enforceable. Since we concentrate on the case of

pure illiquidity risk, in our model, all projects will certainly be realized at t = 2.

So there is no doubt about solvency of the projects, unless insolvency is triggered

by illiquidity. If the central bank follows the Bagehot principle and creates artificial

liquidity at the drop of a hat — against allegedly good collateral, — all private

incentives to care about ex ante liquidity provision will be destroyed, exacerbating

the moral hazard problem: The free-riding banks, investing all their funds in the

projects with higher returns, can always get liquidity support and thus are able to

offer more attractive terms to investors at t = 0. This drives out all the prudent

banks and leaves the investors worse off 2 .

2 In reality, there is no clear-cut distinction between insolvency and illiquidity. We leave it

to future research to allow for the risk of insolvency. But we doubt that our basic argument

will be affected.

18



So what policy options should be taken? One might argue that a central bank

should provide liquidity support only to prudent banks (conditional on banks hav-

ing invested sufficiently in liquid assets). But such a commitment is simply not

credible: As emphasized by Rochet (2004) and Cao & Illing (2008), there is a seri-

ous problem of dynamic consistency.

Rather than relying on an implausible commitment mechanism, the obvious so-

lution is a mix of two instruments: ex ante liquidity regulation combined with ex

post lender of last resort policy. The second best outcome from the investors’ point

of view needs to be implemented by the following policy: In a first step, a bank-

ing regulator has to impose ex ante liquidity requirements. Requesting minimum

investment in liquid type 1 assets of at least αL for π < π′2 and αH for π ≥ π′2 would

give investors the highest expected payoff as characterized in F 4. When banks

are not allowed to operate with insufficiently low liquidity holdings, there are no

incentives for free-riding. For high values π ≥ π′2 the central bank acts as lender of

last resort in the bad state, eliminating costly bank runs. This raises the expected

payoff for investors, even though it increases the range of parameter values with

systemic risk.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ௅ሻሿߙሾܴሺܧ

ଶߨ
ᇱ   ଶߨ ߨ

,ுߙሾܴሺܧ ,ߨ ሻሿߢ

,ுߙሾܴሺܧ ,ߨ ܿሻሿ

 ௅ሻሿߙሾܴሺܧ

ߨ

,ுߙሾܴሺܧ ,ߨ ሻሿߢ
 ௜ሻሿߙሾܴሺܧ

 ௜ሻሿߙሾܴሺܧ

ଶߨ
ᇱ  

Fig. 4. Investors’ real expected return E[R(αH , π, κ)] for the case of ex ante liquidity reg-

ulation combined with ex post lender of last resort policy for high π, in comparison to the

market equilibrium, E[R(αH , π, c)]

In a quite different setting, using a framework with asymmetric information,

Farhi & Tirole (2009) derive related results. They show that monetary policy (with
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the real interest rate as policy variable) faces a commitment problem. They also

derive a role for a minimum liquidity ratio. Our set up shows that the key chal-

lenge for regulators and the central bank is to cope with incentives for financial

intermediaries to free-ride on liquidity provision. Furthermore, it allows us to com-

pare liquidity regulation with alternative mechanism designs. One might expect

that imposing equity requirements is sufficient to provide a cushion against liquid-

ity shocks. As a further alternative, one might impose narrow banking in the sense

that banks are required to hold sufficient liquid funds so as to pay out in all con-

tingencies. As shown in the next section, both these options turn out to be strictly

worse than imposing minimum liquidity standards ex ante combined with lender

of last resort policy. They are even likely to be inferior to the outcome of a mixed

strategy equilibrium with free-riding banks.

4 The role of equity and narrow banking

Let us now introduce equity requirements in the model, i.e., banks are required to

hold some equity as a share of their assets. Instead of pure fixed deposit contracts,

the banks now issue a mixture of deposit contract and equity for attracting funds

from the investors (Diamond & Rajan, 2000, 2005, 2006). Equity can reduce the

fragility by providing a cushion against negative shocks. This, however, comes at

a cost since it allows the bank manager to capture a rent. So the regulator needs to

strike a balance between benefit and cost.

Being a renegotiatable claim, in contrast to deposits equity is subject to the hold-

up problem, i.e., equity holders will only get a share ζ (ζ ∈ [0, 1]) of the surplus,

the bank manager extracting the remaining part 1 − ζ as rent from his superior

collection skills. Without changing the nature of the problem, in the following we

simply assume that ζ = 1
2 .

With ζ = 1
2 the bank manager and equity holders share the surplus over deposits

equally. So the equity value of a bank not suffering from a run is γE[Rs]−d0
2 in state

s with expected return γE[Rs] and deposit claims d0. Assume that some equity

requirement k is imposed — that is, the share of equity to bank assets is k with:
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k =

γE[Rs]−d0
2

γE[Rs]−d0
2 + d0

.

Solving for d0 gives the return to depositors as

d0 =
1 − k
1 + k

γE[Rs]

with equity holders receiving k
1+kγE[Rs]. Thus investors providing funds both in the

form of deposits and equity to the banks will receive the payoff 1
1+kγE[Rs] < γE[Rs]

at t = 1.

In the absence of aggregate risk, introducing equity requirements is a pure cost,

reducing the investors’ payoff. Somewhat counterintuitively, without aggregate risk

equity requirements even reduce the share α invested in safe projects. The reason is

that with equity financing bank managers get the rent γE[R]−d0
2 , extracting part of the

surplus over deposits from equity holders. Since the return at t = 2 is higher than

at t = 1, bank managers are willing to consume late, so the amount of resources

needed at t = 1 is lower in the presence of equity. Consequently, the share α will

be reduced. Obviously, banks holding no equity provide more attractive conditions

for investors, so equity could not survive. This at first sight counterintuitive result

simply demonstrates that there is no role (or rather only a payoff reducing role) for

costly equity in the absence of aggregate risk.

The benefit of equity comes in when there is aggregate risk: Equity helps to

absorb aggregate shocks and avoid the costly bank runs. In the simple 2-state set

up, equity holdings need to be just sufficient to cushion the bad state. With sufficient

equity, the bank can chose α = αH, profiting from the high return in the good state

and still staying solvent in the bad state. In that case, it just needs to be able to pay

out the fixed claims of investors, wiping out all equity.

With equity k and investment α = αH, the total amount that can be pledged to

investors providing funds both as depositors and equity holders is 1
1+kγE[RH] in the

good state with claims of depositors being d0 = αHR1 + (1 − αH) pLR2 and return

on equity k
1+kγE[RH]. In the bad state, a marginally solvent bank is able to pay out

d0 = αHR1 + (1 − αH)pLR2 to depositors. So the minimum k∗ to prevent bank runs

is determined by the condition:

21



1 − k∗

1 + k∗
γE[RH] = αHR1 + (1 − αH) pLR2,

and we solve to get

k∗ =
γE[RH] − d0

γE[RH] + d0
. (3)

Obviously, k∗ is decreasing in pL: The higher pL, the lower the cushion k∗ which

is needed to stay solvent in the bad state.

Condition (3) determines the minimum equity requirement k∗ a regulator needs

to impose in order to eliminate the risk of costly bank runs. Setting k lower (k < k∗)

would not help to prevent bank runs; setting k too high (k > k∗) would just raise

the cost of holding equity without additional benefit. Thus from now on we can

concentrate on the level k∗ without loss of generality. In the following, we compare

the investors’ payoff in an economy subject to equity requirements with the payoff

in the absence of any regulation (as derived in P 2.3) and then with the

case of liquidity requirements, combined with the central bank acting as lender of

last resort. Finally, we conclude with an analysis of narrow banking.

4.1 Equity requirements versus market equilibrium

We first ask whether equity requirements can improve the investor’s allocation

in this economy, relative to the payoff they get in the market equilibrium we char-

acterized in P 2.3. As shown in S 2, the investors’ payoff depends

on the probability π of the good state. If π is low enough, banks choose the safe

strategy αL. For high π, they pick αH, with payoff increasing in π. In an intermedi-

ate range, free-riding banks drive down investor’s return relative to what they could

earn from investment in the safe strategy αL. The overall payoff as a function of π

is the grey lines drawn in F 3. Let us call this function Π(π). It seems natural

to expect that equity requirements are superior at least for the intermediate range.

As we will show, this intuition does not hold.

In F 5 (a), the solid black lines show the investors expected return Πe(π) =

d0+ Π
2 π for the case of equity requirements. With equity requirements, the investor’s
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expected return is uniformly increasing in π. The equity requirement k∗ is chosen

such that deposits will always be paid out fully even in the bad state. Thus, the fixed

deposit payment d0 is independent of π. In contrast the return on equity Π
2 is paid

out only in the good state. The more likely the good state (the higher π), the higher

is the expected return on equity. Its value is determined by

Π

2
=
γE[RH] − d0

2
=
γE[RH] − 1−k

1+kγE[RH]
2

=
k

1 + k
γE[RH].

Under what conditions will a banking system with equity requirements outper-

form the investors’ return in the market equilibrium? Intuition suggests that relative

performance depends on parameter values. As L 4.1 proves, equity require-

ments can never dominate the market outcome uniformly. It is straightforward to

compare the investor’s payoff under equity requirements with the market equilib-

rium with free-riding for the extreme values π = 0 and π = 1:

Lemma 4.1 The investors’ expected return under the equity requirement is lower

than the market equilibrium outcome when π = 0 or π = 1. 2

Proof See A A.6. 2

The intuition of L 4.1 is straightforward: Since there is no uncertainty when

π = 0 or π = 1, it is inferior to hold costly equities as explained above.

F 5 (a) suggests, however, that equity requirements might uniformly im-

prove the investor’s expected return for the range of parameter values resulting in

the mixed strategy equilibrium with free-riding banks. Unfortunately, P

4.2 shows that this need not be the case. The equity regulation regime may even be

sometimes dominated by the market equilibrium with free-riding.

Proposition 4.2 Imposing the equity requirement k∗ may make investors better off

than the mixed strategy equilibrium with free-riding banks for some range of pa-

rameter values. But the costs of imposing equity requirements may be so high that

the equity regulation regime may be dominated even by the market equilibrium with

free-riding. There are three possible cases:

(1) The equity regulation regime dominates the market equilibrium in the case of
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free-riding, that is for π1 ≤ π ≤ π2;

(2) In the range π1 ≤ π ≤ π2, the equity regulation regime dominates for high

values of π, whereas the market equilibrium with free-riding dominates for

low values. In addition, the equity regulation regime dominates the market

equilibrium for the low values of π in the range π2 ≤ π ≤ 1;

(3) In the range π1 ≤ π ≤ π2, the equity regulation regime dominates for high

values of π, whereas the market equilibrium with free-riding dominates for

low values. In addition, the equity regulation regime is uniformly dominated

by the market equilibrium in the range π2 ≤ π ≤ 1. 2

Proof See A A.7. 2

The three possible cases are characterized in F 5 (a), (b) and (c), respec-

tively. The quantitative conditions which separate these cases can be found in A-

 B. Numerical examples illustrating these cases are presented in A

C.

P 4.2 says that the effectiveness of imposing equity requirements is

dubious. Equity requirements may give investors a higher payoff than the mixed

strategy equilibrium with free-riding banks for all parameter values with mixed

strategy equilibrium π1 ≤ π ≤ π2. This case is captured as case (a) (as P

4.2 (1)), shown in F 5 (a). Since free-riding partly destroys the value of as-

sets held by prudent banks (forcing them to hold a riskier portfolio) it might seem

that imposing equity requirements will always dominate the market equilibrium

outcome with mixed strategies. But according to P 4.2 it is quite likely

that equity requirements result in inferior payoffs for some range of parameter val-

ues (for example, when c is not very low and pH is close to γ, i.e., the bank run

cost is not very high), as shown in case (b) in F 5 (b) (when A ∈ (π1, π2), as

P 4.2 (2), equity requirements result in inferior payoffs to mixed strategy

equilibrium for (π1, π̃
′
1), but superior to market equilibrium for some high values

of [π2, π̃
′
2)). It might be that imposing equity requirements makes investors even

worse off , as in F 5 (c), representing case (c) (when A > π2, as P

4.2 (3), equity requirements result in inferior payoffs to mixed strategy equilibrium

for (π1, π̃
′
1) and inferior payoffs for all π ∈ [π2, 1]).
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The intuition behind this result is that holding equity can be quite costly 3 ; if

so, it may be superior to accept the fact that systemic risk is a price to be paid for

higher returns on average.

4.2 Equity requirements versus conditional lender of last resort policy

As just shown, there is no clear ranking between market equilibrium without

regulation and a regime with equity requirements. In contrast, the mix of ex ante

liquidity requirements with ex post lender of last resort policy is always dominat-

ing equity requirements. See F 6. The reason is as follows: Consider that the

banks are required to hold α = αH when π is high. Then when pH is revealed, the

investors’ real return is γE[RH]; and when pL is revealed, the investors’ real return

is αHR1 + (1 − αH)pLR2. Therefore the investors’ overall expected return turns out

to be

Πm = γE[RH]π + (1 − π)
[
αHR1 + (1 − αH)pLR2

]
,

which is linear in π, as the chain line of F 6 shows. Note that when π = 1,

Πm = γE[RH] > d0 + Π
2 ; and when π = 0, Πm = αHR1 + (1 − αH)pLR2 = d0. There-

fore, Πm line is above d0 + Π
2 π, ∀π ∈ (0, 1], i.e., the mix of liquidity requirements

with lender of last resort policy is always dominating equity requirements when

aggregate uncertainty exists.

3 The cost of holding equity comes from the fact that equity holders can only get the share ζ

from the surplus in the good state. In this paper, we set ζ = 0.5 for a simpler exposition. The

investors’ expected return increases when ζ gets higher and, ceteris paribus, outperforms

the return in the market equilibrium for a wider range of π. In the limit, when ζ = 1, issuing

equity creates no hold-up problems and so does not incur costs. In that case, imposing

equity would be able to implement the planners solution.
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Fig. 5. Investors’ expected return in the market equilibrium (solid grey lines) / under equity

requirements (solid black lines). In each of the three cases, the range where the equity

regulation regime dominates the market equilibrium is denoted by the interval
(
π̃′1, π̃

′
2

)
.

4.3 Liquidity requirements versus narrow banking

In times of crises, frequently there are calls to go back to narrow banking in order

to avoid the risk of runs. Under narrow banking, institutions with deposits would be
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Fig. 6. Real expected return with credible liquidity injections (black chain line, for the case

of F C.3), comparing to investors’ expected return in the market equilibrium (solid

grey lines) / under equity requirements (solid black lines)

required to hold as assets only the most liquid instruments so as to be always able

to meet any deposit withdrawal by selling its assets. Obviously, narrow banking

can be extremely costly. In our model, banks would be required to hold sufficient

liquid funds to pay out in all contingencies: α ≥ αL. As F 7 illustrates, under

narrow banking an investor’s payoff (the solid grey line) can be much lower for

high π compared to ex ante liquidity regulation combined with ex post lender of

last resort policy (the solid black line). Just as with equity requirements, narrow

banking (imposing the requirement that banks hold sufficient equity so as to be

able to pay out demand deposits in all states of the world) can be quite inferior:

If the bad state is a rare probability event, it simply makes no sense to dispense

with all the efficiency gains from investing in high yielding illiquid assets despite

its impact on systemic risk.
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Fig. 7. Real expected return with narrow banking compared to ex ante liquidity regulation

5 Conclusion

Traditionally, exposure to aggregate liquidity shocks has been modeled as ex-

ogenous event. In this paper, we derive the aggregate share of liquid projects en-

dogenously. It depends on the incentives of financial intermediaries to invest in

risky, illiquid projects. This endogeneity allows us to capture the feedback between

financial market regulation and incentives of private banks, determining the aggre-

gate amount of liquidity available. As a consequence of limited liability, banks are

encouraged to free-ride on liquidity provision. Relying on sufficient liquidity pro-

vided by the market, they are inclined to invest excessively in illiquid long term

projects.

Liquidity provision by central banks can help to prevent bank runs with ineffi-

cient early liquidation. However, the anticipation of unconditional liquidity provi-

sion results in overinvestment in risky activities (moral hazard), creating excessive

exposure to systemic risk. We show that it is crucial for efficient lender of last re-

sort policy to impose ex ante minimum liquidity standards for banks. In addition,

we analyze the impact of equity requirements. We show that it is even likely to be

inferior to the outcome of a mixed strategy equilibrium with free-riding banks. For

similar reasons, imposing narrow banking (require banks to hold sufficient liquid

funds to pay out in all contingencies) turns out to be strictly inferior relative to the

combination of liquidity requirements with lender of last resort policy.
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In modern economies, a significant part of intermediation is provided by the

shadow banking sector. These institutions (like hedge funds and investment banks)

are not financed via deposits, but they are highly leveraged. Incentives to dance (to

free-ride on liquidity provision) seem to be even stronger for the shadow banking

industry. So imposing liquidity requirements only for the banking sector will not

be sufficient to cope with free-riding. In future work, we plan to analyze incentives

for leveraged institutions within our framework.
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Appendix

A Proofs

A.1 Proof of P 2.1

In the absence of aggregate risk, given ps (s ∈ {H, L}), the social planner maxi-

mizes the investors’ return by setting αs such that

αs = arg max
αs∈[0,1]

γ

{
αsR1 + (1 − αs)

[
psR2 +

(1 − ps)R2

r

]}
with rs ≥ 1. (A.1)

Solve to get αs =
γ−ps

γ−ps+(1−γ) R1
R2

with rs = 1.

In the presence of aggregate risk, to find the social planner’s optimal α which

may depend on π, one just has to find the α that maximizes the investors’ return for

each π ∈ [0, 1].

That the gross interest rate offered to the entrepreneurs at t = 1 is no less than 1

implies that for any given α the investors’ expected payoff is

E[R(α)] = πmin {αR1 + (1 − α)pHR2, γ[αR1 + (1 − α)R2]}
+(1 − π) min {αR1 + (1 − α)pLR2, γ[αR1 + (1 − α)R2]} ,

which is linear in π. Then it is easy to depict E[R(α)] as a function of π, when

α = αH or αL, as F A.1 shows. These two lines intersect at π′2 =
γE[RL]−κ
γE[RH]−κ . Note

that E[R(αH)] = γE[RH] > γE[RL] when π = 1, and E[R(αH)] = κ < γE[RL] when

π = 0.

For any α ∈ (αL, 1], E[R(α)] = γ[αR1 + (1 − α)R2] < γE[RL] as the dotted grey

lines in F A.1. For any α ∈ [0, αH), E[R(α)] = π[αR1 + (1 − α)pHR2] + (1 −

π)[αR1 + (1 − α)pLR2]. Note that E[R(α)] < κ when π = 0 and E[R(α)] < γE[RH]

when π = 1, as the dotted black lines in F A.1.

For any α ∈ (αH, αL), E[R(α)] = πγ[αR1 +(1−α)R2]+(1−π)[αR1 +(1−α)pLR2].

Denote αR1 + (1 − α)R2 by E[Rα], and αR1 + (1 − α)pLR2 by κ′. Note that κ <
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Fig. A.1. The investors’ expected return for any α ∈ [0, 1]. The grey line for E[R(αL)], the

black line for E[R(αH)], the dotted grey lines for those E[R(α)] with α ∈ (αL, 1], the dotted

black lines for those E[R(α)] with α ∈ [0, αH), and the chain lines for those E[R(α)] with

α ∈ (αH , αL).

E[R(α)] < γE[RL] when π = 0 and γE[RL] < E[R(α)] < γE[RH] when π = 1. Such

E[R(α)] are depicted as the chain lines in F A.1.

Suppose that the intersection between E[R(α)] and E[R(αL)] is π′′2 =
γE[RL]−κ′

γE[Rα]−κ′ .

To determine the value of π′′2 , note that π′′2
>
< π
′

2 only if γE[RL]−κ′

γE[Rα]−κ′
>
<

γE[RL]−κ
γE[RH]−κ . This is

equivalent to

γE[RL](γE[RH] − γE[Rα]) + (γE[Rα] − γE[RL])κ + (γE[RL] − γE[RH])κ′
>
< 0. (A.2)

Using the fact that γE[Rs] = αsR1 + (1 − αs)psR2 (s ∈ {H, L}), the left hand side of

the inequality (A.2) can be written as

γ(R1 − pLR2) {E[RH](αL − α) − E[Rα](αL − αH) + E[RL](α − αH)} .

Further, since α ∈ (αH, αL), therefore we can replace α by the linear combination

of αH and αL, α = ωαH + (1 − ω)αL with ω ∈ (0, 1). It is easily seen that

γ(R1 − pLR2) {E[RH](αL − α) − E[Rα](αL − αH) + E[RL](α − αH)} = 0,

which implies that π′′2 = π′2.
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Combining all the cases, F A.1 shows the investors’ expected return for

any α ∈ [0, 1]. The social planner’s optimal solution is given by the frontier of the

investors’ expected return (as the dashed black lines in FA.1), which is a state

contingent strategy depending on the probability π: The planner invests the share

αH in liquid projects as long as π′2 ≤ π ≤ 1, and the share αL in liquid projects as

long as 0 ≤ π < π′2. 2

A.2 Proof of P 2.2

To show that the optimal allocation of the central planner’s problem is supported

by the market equilibrium, one has to show that (a) the allocation is feasible in

the market economy, and (b) it is not profitable to unilaterally deviate from such

allocation.

In the planner’s economy, the central planner picks up the optimal αs as equation

(A.1) suggests, and transfer the maximized return to the investors — This coincides

with equations (1) and (2), implying that claim (a) holds.

To show that claim (b) holds, suppose an arbitrary bank i deviates from such

allocation by choosing αi , αs for a given s ∈ {H, L}:

(1) If αi < αs, by market clearing condition the liquidity market interest rate r′ at

t = 1 is now determined by

r′
{
(1 − γ)

[
αiR1 + (1 − αi)psR2

]
+ (N − 1)(1 − γ)

[
αsR1 + (1 − αs)psR2

]}
= γ(1 − αi)(1 − ps)R2 + (N − 1)γ(1 − αs)(1 − ps)R2.

Comparing with the condition in the central planner’s problem in which r = 1

r(1 − γ)
[
αsR1 + (1 − αs)psR2

]
= γ(1 − αs)(1 − ps)R2,

one can see that r′ > 1. For the non-deviators, the depositors’ return becomes

γ

{
αsR1 + (1 − αs)

[
psR2 +

(1 − ps)R2

r′

]}
< d0.

Knowing that the non-deviators will not be able to meet the contracted d0 at

t = 1, the depositors will only deposit at bank i at t = 0. If so, the deposit

return that bank i can offer is at maximum
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d0i = αiR1 + (1 − αi)psR2 < d0,

implying that the deviator gets worse off;

(2) If αi > αs, the aggregate liquidity supply at t = 1 exceeds the the aggregate

liquidity demand because

(1 − γ)
[
αiR1 + (1 − αi)psR2

]
+ (N − 1)(1 − γ)[αsR1 + (1 − αs)psR2]

>N(1 − γ)[αsR1 + (1 − αs)psR2]
= Nγ(1 − αs)(1 − ps)R2,

therefore, the liquidity market interest rate remains at r = 1 and the non-

deviators are able to meet d0. However, the deposit return that bank i can offer

is

d0i = γ[αiR1 + (1 − αi)R2] < γ[αsR1 + (1 − αs)R2] = d0,

implying that the deviator will not get any deposit at t = 0 and is hence worse

off.

Therefore, the planner’s optimal allocation is indeed supported by the market equi-

librium. 2

A.3 Proof of P 2.3

The mixed strategy equilibrium, P 2.3 (1)–(3c), is characterized as

P 2 of Cao & Illing (2008). By choosing to hold a share of safe assets, call

it α∗s, a prudent bank should have equal return at both states, ds
0 = ds

0(pH) = ds
0(pL),

i.e.,

γ

[
α∗sR1 + (1 − α∗s)pHR2 +

(1 − α∗s)(1 − pH)R2

rH

]
= γ

[
α∗sR1 + (1 − α∗s)pLR2 +

(1 − α∗s)(1 − pL)R2

rL

]
.

With some simple algebra this is equivalent to

1
rH

=
1 − pL

1 − pH

1
rL
−

pH − pL

1 − pH
.
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Fig. A.2. Higher interest rates in the mixed strategy equilibrium

Plot 1
rH

as a function of 1
rL

as the black line in F A.2 shows.

The slope 1−pL
1−pH

> 1 and intercept − pH−pL
1−pH

< 0, and the line goes through (1, 1).

But rH = rL = 1 cannot be equilibrium outcome here, because αL is dominant

strategy in this case and subject to deviation. So whenever rH > 1 (suppose 1
rH

= A

in the graph), there must be rH > rL > 1 (because 1
rH
< 1

rL
= B < 1).

At pL, given that rL > 1 the prudent bank’s return is equal to ds
0 = κ(α∗s(pL, rL)) <

κ(αL), since the latter maximizes the bank’s expected return with r∗ = 1 by L

2 of Cao & Illing (2008). Therefore in the mixed strategy equilibrium, investors are

worse off than if all banks would coordinate on the prudent strategy αL. 2

A.4 Proof of P 3.1

The central bank’s optimal policy is to restore the constrained efficiency, as stated

in P 2.1. Therefore, the optimal liquidity requirement, which is captured

by α, should be exactly the same as αH (αL) for high (low) π. So is it with rM.

In addition, for any bank who observes α will get bailed out whenever necessary.
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This only happens when a bank follows α = αH but pL is revealed. In this case,

the investors will get κ = αHR1 + (1 − αH)pLR2 real return plus d0 − κ fiat money

if they do not run on the bank at t = 1
2 . In contrast, the investors will only get the

liquidated value c < 1 < κ as the real retrun if they run on the bank. Of course, they

will wait instead of run. 2

A.5 Proof of P 3.2

Suppose that a representative bank chooses to be prudent with αi = α, and

promises a nominal deposit contract di
0 = γ

[
αR1 + (1 − α)R2

]
in order to maximize

its investors return. Then when the bad state with high liquidity needs is realized,

the central bank has to inject enough liquidity into the market to keep interest rate

at r = 1 in order to ensure bank i’s survival. However, given r = 1, a naughty bank j

can always profit from setting α j = 0, promising the nominal return d j
0 = γR2 > di

0

to its investors. Thus, surely the banks prefer to play naughty.

For those parameter values such that πpHR2 + (1 − π)pLR2 < 1 there exists no

equilibrium with liquidity injection. The reason is the following:

(1) Any symmetric strategic profile cannot be equilibrium, because

(a) If there is no trade under such strategic profile, i.e., α is so small that

the real return is less than 1, one bank can deviate by setting α = 1 and

trading with investors;

(b) If there is trade under such strategic profile, i.e., α > 0 for all the banks,

then one bank can deviate by setting α = 0 and getting higher nominal

return than the other banks.

(2) Any asymmetric strategic profile, or profile of mixed strategies, cannot be

equilibrium, because

(a) If there is no trade under such strategic profile, then the argument of 1 a)

applies here;

(b) If there is trade under such strategic profile, then one bank can deviate by

choosing a pure strategy, α = 0, and get better off — there is no reason to

mix with the other dominated strategies. 2

35



A.6 Proof of L 4.1

When π = 0,

d0 +
Π

2
· 0 =αHR1 + (1 − αH) pLR2

<αLR1 + (1 − αL) pLR2

= γE[RL];

When π = 1,

d0 +
Π

2
=
αHR1 + (1 − αH) pLR2 + αHR1 + (1 − αH) pHR2

2
<αHR1 + (1 − αH) pHR2

= γE[RH]. 2

A.7 Proof of P 4.2

As L 4.1 shows, the investors’ expected return with equity requirements

d0 + Π
2 π is a linear increasing function of π, starting from d0 < γE[RL] when π = 0

and ending with d0 + Π
2 < γE[RH] when π = 1. Whether imposing equity require-

ments improves investors’ expected return (such “improved” region is denoted by

the interval (π̃′1, π̃
′
2) in F 3) depends on the intersection between d0 + Π

2 π and

γE[RL], denoted by A as in in F 3. Generically, there are three cases concern-

ing the relative positions of Π(π) and Πe(π):

(1) As F 5 (a) shows, when A ∈ (0, π1], Πe(π) is higher than Π(π) for π ∈

[π1, π2];

(2) As F 5 (b) shows, when A ∈ (π1, π2), Πe(π) is only higher than Π(π) for

part of π ∈ [π1, π2]. In addition, Πe(π) is higher for part of π ∈ (π2, 1];

(3) As F 5 (c) shows, when A ≥ π2, Πe(π) is only higher than Π(π) for part

of π ∈ [π1, π2]. In addition, Πe(π) is no higher for all π ∈ (π2, 1]. 2

36



B Effectiveness conditions for equity requirements

To economize the notations, define the investors’ expected return function in the

market equilibrium as follows:

Definition Define a representative investor’s expected return function without eq-

uity requirements as Π(π), such that

Π(π, ·) =



γE[RL], if π ∈
[
0, π1

]
;

α∗sR1 +
(
1 − α∗s

)
pLR2, if π ∈ (π1, π2) ;

γE[RH]π + (1 − π)c, if π ∈
[
π2, 1

]
and her expected return function under equity requirements as Πe(π), as well as the

set S in which the investor’s payoff is improved under equity requirement, such that

S := {π̂|Πe(π̂) ≥ Π(π̂)} . 2

In the following, we are interested in the cases, captured in the set S (denoted by

the area (π̃′1, π̃
′
2) in F 3)), where the banking system with equity requirements

outperforms that in the market equilibrium.

Denote the intersection of Πe(π) = d0 + Π
2 π and γE[RL] by A, which is equal to

(see the proof below for detail)

A =
2(R1 − pLR2)

(1 − γ)R1 + (γ − pL)R2
,

as well as the intersection of Πe(π) = d0 + Π
2 π and γE[RH]π + (1 − π)c by B, which

is equal to (see the proof below for detail)

B =
2
[
(1 − γ)(cR1 − pLR1R2) + (γ − pH)(cR2 − R1R2)

]
2(1 − γ)cR1 + 2(γ − pH)cR2 +

[
γ(pH − 1) − (γ − pH) − (1 − γ)pL

]
R1R2

.

Then PB.1 characterizes the improvement in investors’ payoff achieved

by introducing equity requirements.
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Proposition B.1 Given the equity requirement k imposed by the regulator,

(1) When A ∈ (0, π1
]
, i.e.,

(2γR2 − γE[RH] − d0) (γE[RL] − d0) + (2γE[RL] − γE[RH] − d0) (d0 − c) ≤ 0,

then S = [A, B] ⊇
[
π1, π2

]
;

(2) When A ∈ (π1, π2), i.e.,

(2γR2 − γE[RH] − d0) (γE[RL] − d0) + (2γE[RL] − γE[RH] − d0) (d0 − c) > 0,

and

γ (E[RH] − E[RL]) (d0 − c) ≥ (γE[RH] − c) (γE[RL] − d0) ,

then S = [π̃, B] in which π̃ ∈ (π1, π2) and S
⋂[

π1, π2
]

=
[
π̃, π2

]
;

(3) When A ≥ π2, i.e.,

2 (γE[RL] − d0) (γE[RH] − c) ≥ (γE[RH] − d0) (γE[RL] − c) ,

then S ⊆ [π̃, B] in which π̃ ∈ (π1, π2) and S
⋂[

π1, π2
]

=
[
π̃, π2

]
. 2

Proof The intersection A takes the value of π, such that

γE[RL] = d0 +
Π

2
π.

Solve to get

A =
2 (γE[RL] − d0)
γE[RH] − d0

=
2(R1 − pLR2)

(1 − γ)R1 + (γ − pL)R2
.

The intersection B takes the value of π, such that

γE[RH]π + (1 − π)c = d0 +
Π

2
π.

Solve to get

B =
d0 − c

γE[RH]+d0
2 − c

=
2
[
(1 − γ)(cR1 − pLR1R2) + (γ − pH)(cR2 − R1R2)

]
2(1 − γ)cR1 + 2(γ − pH)cR2 +

[
γ(pH − 1) − (γ − pH) − (1 − γ)pL

]
R1R2

.
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Then the set S can be determined in each case:

(1) As F 5 (a) shows, when A ∈ (0, π1
]
,

2 (γE[RL] − d0)
γE[RH] − d0

≤ π1 =
γE[RL] − c
γR2 − c

,

rearrange to get

(2γR2 − γE[RH] − d0) (γE[RL] − d0) + (2γE[RL] − γE[RH] − d0) (d0 − c)
≤ 0.

Since Πe(π) is strictly increasing in π, then

Πe(π)|π=B > Πe(π)|π=A ≥ γE[RL]|π=π1 =
[
γE[RH]π + (1 − π)c

]
|π=π2

≥Π(π)|π∈[π1,π2],

which implies S = [A, B] ⊇
[
π1, π2

]
;

(2) As F 5 (b) shows, when A ∈ (π1, π2
]
,

π1 =
γE[RL] − c
γR2 − c

<
2 (γE[RL] − d0)
γE[RH] − d0

,

rearrange to get

(2γR2 − γE[RH] − d0) (γE[RL] − d0) + (2γE[RL] − γE[RH] − d0) (d0 − c)
> 0.

What’s more, in this case B ∈
[
π2, 1

]
, and this is equivalent to

γE[RL] − c
γE[RH] − c

= π2 <
d0 − c

γE[RH]+d0
2 − c

,

rearrange to get

γ (E[RH] − E[RL]) (d0 − c) ≥ (γE[RH] − c) (γE[RL] − d0) .

Similarly,

Πe(π)|π≤A ≤ γE[RL]|π=π1 =
[
γE[RH]π + (1 − π)c

]
|π=π2 ≤ Π(π)|π∈[π2,B]

≤Πe(π)|π≥B,

which implies S = [π̃, B] in which π̃ ∈ (π1, π2
]

and S
⋂[

π1, π2
]

=
[
π̃, π2

]
;

(3) As F 5 (c) shows, when A ≥ π2,

π2 =
γE[RL] − c
γE[RH] − c

≤
2 (γE[RL] − d0)
γE[RH] − d0

,
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rearrange to get

2 (γE[RL] − d0) (γE[RH] − c) ≥ (γE[RH] − d0) (γE[RL] − c) .

Similarly,

Πe(π)|π≤B < Πe(π)|π≥A ≤ γE[RL]|π=π1 =
[
γE[RH]π + (1 − π)c

]
|π=π2 ,

which implies S ⊆ [π̃, B] in which π̃ ∈ (π1, π2
]

and S
⋂[

π1, π2
]

=
[
π̃, π2

]
. 2

C Numerical examples

The following figures present numerical illustrations representing the three dif-

ferent cases.
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Fig. C.1. Investors’ expected return in the market equilibrium (solid grey lines) / under

equity requirements (solid black lines), with pH = 0.3, pL = 0.25, γ = 0.6, R1 = 1.8,

R2 = 5.5, c = 0.9
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Fig. C.2. Investors’ expected return in the market equilibrium (solid grey lines) / under

equity requirements (solid black lines), with pH = 0.4, pL = 0.3, γ = 0.6, R1 = 2, R2 = 4,

c = 0.8
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Fig. C.3. Investors’ expected return in the market equilibrium (solid grey lines) / under

equity requirements (solid black lines), with pH = 0.5, pL = 0.25, γ = 0.7, R1 = 1.8,

R2 = 2.5, c = 0
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