
Appendix A
Elements of

Mathematics: A Quick
Reference

He calls to me out of Seir, Watchman, what of the night? Watchman, what of the

night? The watchman said, The morning comes, and also the night; if you will

inquire, inquire, and come again. (Isaiah 21:11–12)

The people to whom this was said has enquired and tarried for more than two

millennia, and we are shaken when we realize its fate. ... Nothing is gained by

yearning and tarrying alone, ... We shall set to work and meet the ‘demands of the

day,’... if each finds and obeys the demon who holds the fibers of his very life.

—Max Weber (1918), Speech at Ludwig-Maximilians-Universität München
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1 Elementary Mathematics

The Jensen concavity inequality For a concave function f (x) : R → R and m = 1, 2, . . .,
then

f

 m∑
i=1

λixi

 ≥ m∑
i=1

λi f (xi) with xi ∈ R, λi ≥ 0, and
m∑

i=1

λi = 1.

Example: The cummulative distribution function F(x) with stochastic consumption pay-
off x is called a lottery F(x). Then the neoclassical (strictly concave) von Neumann-
Morgenstern utility from the lottery satisfies∫

u(x)dF(x) < u
(∫

xdF(x)
)
, i.e.E [u(x)] < u (E [x]) .

Further, a lottery F(·) first-order stochastically dominates another lottery G(·) when∫
u(x)dF(x) ≥

∫
u(x)dG(x),

and such first-order stochastical domination holds if and only if F(x) ≤ G(x) for all x. If
the two lotteries have the same mean, then F(·) second-order stochastically dominates G(·)
when∫

u(x)dF(x) ≥
∫

u(x)dG(x).

2 Analysis

Euler’s formula of homogenous functions Suppose F(x1, x2, . . . , xn) is homogeneous of
degree r and differentiable. Then at any (x1, x2, . . . , xn)

∂F(x1, x2, . . . , xn)
∂x1

x1 +
∂F(x1, x2, . . . , xn)

∂x2
x2 + . . . +

∂F(x1, x2, . . . , xn)
∂xn

xn = rF(x1, x2, . . . , xn).

Proof: By definition for arbitrary λ > 0

F(λx1, λx2, . . . , λxn) − λrF(x1, x2, . . . , xn) = 0.
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Differentiate it with respect to λ

n∑
i=1

∂F(λx1, λx2, . . . , λxn)
∂(λxi)

xi = rλr−1F(x1, x2, . . . , xn).

Since λ is arbitrarily taken, the equation above surely holds when λ = 1. 2

Geometric series The sum of the sequence a, aq, aq2, . . . , aqn is

n∑
i=0

aqi =
a
(
1 − qn+1

)
1 − q

. With q ∈ (0, 1), lim
n→+∞

n∑
i=0

aqi =
a

1 − q
.

Proof: Define

S =

n∑
i=0

aqi = a + aq + aq2 + . . . + aqn, and

S q = q
n∑

i=0

aqi = aq + aq2 + . . . + aqn + aqn+1. Then

S − S q = a − aqn+1,

S =
a
(
1 − qn+1

)
1 − q

.

2

The intermediate value theorem (Theorem of Balzano) If the function f (x) : [a, b] → R
is continuous and

[
f (a) − c

] [
f (b) − c

]
≤ 0 (c ∈ R), then the equation f (x) = c, x ∈ [a, b] has

a solution. That is, if the two ends of the function, f (a) and f (b) lie on different sides of c,
then the continuous curve f (x) must cross c at least once somewhere between a and b.

L’Hôpital’s rule Suppose that f (x) : R → R and g(x) : R → R are twice continuously
differentiable functions in the neighborhood of x∗ where

lim
x→x∗

f (x) = lim
x→x∗

g(x) = 0 or lim
x→x∗

f (x) = lim
x→x∗

g(x) = +∞, then

lim
x→x∗

f (x)
g(x)

= lim
x→x∗

f ′(x)
g′(x)

.

Example: Take CRRA utility function u(c) = c1−σ−1
1−σ . Then

lim
σ→0

u(c) =
c1−σ ln c
−1

∣∣∣∣∣∣
σ→0

= ln c.
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Taylor expansion If function f (x) : R → R is well defined on some range we’re interested
in, and continuously differentiable till n+1-th order, then for a reference point a in this range,

f (x) = f (a) + f ′(a)(x − a) +
1
2

f ′′(a)(x − a)2 + . . . +
1
k!

f (k)(a)(x − a)k + . . . .

If x is arbitrarily close to a, then the first order Taylor expansion f (x) = f (a) + f ′(a)(x− a) is
a sufficiently precise approximation.

Example: limx→0 ln(1+ x) = x is one of the most useful approximation in macroeconomics.

Implicit function theorem Implicit function is defined through equation F(x, u) = 0, x, u ∈ R
and u(x) : R→ R. Given ∂F

∂u , 0, then

∂u
∂x

= −

∂F
∂x
∂F
∂u

.

Example: Suppose in equilibrium two macroeconomic variables (c, s) is related by the first
order condition f (c) + g(s) = 0, and we know that c is a function of s. Then the relation
between these two variables can be derived by

f ′(c)
∂c
∂s

+ g′(s) = 0, i.e.
∂c
∂s

= −
g′(s)
f ′(c)

.

Log-linearization Suppose that functions x1(t), x2(t) are both functions of t. Suppose that
function f (t) is the product of them, f (t) = x1(t)x2(t), then

ḟ (t)
f (t)

=
ẋ1(t)
x1(t)

+
ẋ2(t)
x2(t)

.

Proof: ln f (t) = ln x1(t) + ln x2(t), and take derivatives of t on both sides. 2

Log-linear approximation Suppose a dynamic system is characterized by

f (At, Bt, . . .) = g(Zt)

in which At, Bt, . . . ,Zt are strictly positive variables, and f (·), g(·) may be non-linear in the
variables. Also the system has a steady state such that

f (A, B, . . .) = g(Z). Then
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∂ f (A, B, . . .)
∂A

Aat +
∂ f (A, B, . . .)

∂B
Bbt + . . . = g′(Z)Zzt, in which

xt = ln
(Xt

X

)
= ln

(
1 +

Xt − X
X

)
≈

Xt − X
X

,

i.e. xt is approximately the percentage deviation of Xt from the steady state when such devia-
tion is small, capturing the local behavior around the steady state.

Proof: Rewrite the equation using the fact that Xt = exp(ln Xt) and then take logs on
both sides, ln f (exp(ln At), exp(ln Bt), . . .) = ln g(exp(ln Zt)). Take the first order Taylor
approximation around the steady state (ln(A), ln(B), . . . , ln(Z))

ln f (A, B, . . .) +
1

f (A, B, . . .)

[
∂ f (A, B, . . .)

∂A
A(ln At − ln A)

+
∂ f (A, B, . . .)

∂B
B(ln Bt − ln B) + . . .

]
= ln g(Z) +

1
g(Z)

[
g′(Z)Z(ln Zt − ln Z)

]
,

using the definition xt = ln Xt− ln X and rearrange the equation above to get the result. 2

Leibnitz’s rule Suppose that function f (x) : R→ R is defined as

f (x) =

u(x)∫
a

g(t)dt

in which a is a constant, then

f ′(x) = g(u(x))u′(x).

Proof: The proof is done in an intuitive way. Calculating f (x) means that

f (x) = G(u(x)) −G(a)

in which G(·) is the original function such that G′(·) = g(·), and note that G(a) is a constant.
Then by the chain rule

f ′(x) = G′(u(x))u′(x) = g(u(x))u′(x).

2
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Integration by parts Suppose that u(x) and v(x) are both functions of x and differentiable
for x ∈ [a, b]. Then

b∫
a

u(x)dv(x) = u(x)v(x)|ba −

b∫
a

v(x)du(x).

Proof: By the product rule of differentiation

d [u(x)v(x)] = v(x)du(x) + u(x)dv(x).

Then integrate both sides on [a, b] and the result is immediately seen. 2

3 Probability and Statistics

Expectation, variance, and covariance For random variables X with (continuous) probabil-
ity density function f (x), the expected value of X is

E[X] =

+∞∫
−∞

x f (x)dx,

the variance of X is

var[X] = E
[
(X − E[X])2

]
= E

[
X2

]
− (E[X])2 .

For another random variables Y correlated with X with (continuous) probability density func-
tion g(y), the covariance of X and Y is

cov[X,Y] = E [(X − E[X]) (Y − E[Y])] = E[XY] − E[X]E[Y], therefore
E[XY] = E[X]E[Y] + cov[X,Y].

Moments of functions of random variables For random variables X with (continuous) prob-
ability density function f (x), the moments of its linear transformation aX + b (a, b ∈ R) are

E [aX + b] = aE [X] + b,
var[aX + b] = a2var[X].
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For some other random variables Y and Z correlated with X with (continuous) probability
density functions g(y), h(z), the moments of linear functions of X, Y , Z (a, b ∈ R) are

cov[aX + bZ,Y] = acov[X,Y] + bcov[Z,Y],
E[aX + bY] = aE[X] + bE[Y], but

var[aX + bY] = a2var[X] + b2var[Y] + 2abcov[X,Y].

Example: Suppose φ and ψ are iid and φ ∼ N
(
0, σ2

)
and ψ ∼ N

(
0, δ2

)
, then what is

cov[aφ + ψ, φ] (a ∈ R)?

cov[aφ + ψ, φ] = acov[φ, φ] + cov[ψ, φ].

The first term is actually avar[φ] by the definition of covariance, and the second term is
zero since the variables are iid.

Log-normal distribution For a normal distribution ln z ∼ N
(
µ, σ2

)
, the expected value of z

is E[z] = exp
(
µ + σ2

2

)
, and ln E[z] = µ + σ2

2 .

Proof: The probability density distribution function of x = ln z is f (x) = 1
σ
√

2π
exp

[
−

(x−µ)2

2σ2

]
,

then

E[z] =

+∞∫
−∞

ex f (x)dx

=

+∞∫
−∞

1

σ
√

2π
exp

[
−

x2 − 2xµ + µ2 − 2σ2x
2σ2

]
dx

= exp
(
µ +

σ2

2

) +∞∫
−∞

1

σ
√

2π
exp

[
−

(x − µ − σ2)2

2σ2

]
dx

= exp
(
µ +

σ2

2

)
.

An easier approach is to exploit the moment generating function. This is left as an exercise
for the readers. 2

Linear conditional mean and decision rule For two correlated random variables X and Y ,
if the conditional mean E[X|y] is a linear function of y, i.e. the decision rule after observing y
is E[X|y] = α + βy, then

α= E[X] − βE[Y],

β=
cov[X,Y]

var[Y]
.
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in which E[X] and E[Y] are unconditional means.

Proof: Given that the unconditional variance of neither X nor Y is zero,

E[X|y] =

+∞∫
−∞

x f (x|y)dx =

∫ +∞

−∞
x f (x, y)dx

fY(y)
, we get

+∞∫
−∞

x f (x, y)dx = fY(y)(α + βy). (1)

Integrate both sides of (1) on y, one can immediately see that E[X] = α + βE[Y]. Now
multiply both sides of (1) by y and integrate both sides of the new equation on y, one can
immediately see that E[XY] = αE[Y] + βE

[
Y2

]
. Then solve these two equations for α and

β. 2

Bivariate normal distribution and conditional mean For two correlated and normally dis-
tributed random variables X and Y , the conditional mean E[X|y] is

E[X|y] = E[X] +
cov[X,Y]

var[Y]
(y − E[Y])

in which E[X] and E[Y] are unconditional means.

Proof: Start from the joint distribution of X and Y. — To economize the notations, denote
that x ∼ N(µ, σ2) and y ∼ N(ν, γ2)

f (x, y) =
1

2πσγ
√

1 − ρ2
exp

(
−

q
2

)
, in which

q =
1

1 − ρ2

( x − µ
σ

)2
− 2ρ

( x − µ
σ

) (y − ν
γ

)
+

(
y − ν
γ

)2 , and cov[X,Y] = ρσγ.

E[X|y] can be computed from

E[X|y] =

+∞∫
−∞

x f (x|y)dx =

+∞∫
−∞

x
f (x, y)
fY(y)

dx,

in which fY(y) is the marginal distribution of Y and can be computed from

fY(y) =

+∞∫
−∞

f (x, y)dx =
1

γ
√

2π
exp

[
−

(y − ν)2

2γ2

]
.
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Actually in the procedure above one can find that

f (x, y) = fY(y)

 1

σ
√

1 − ρ2
√

2π
exp

[
−

(x − b)2

2σ2(1 − ρ2)

]
in which b = E[X|y] = µ + ρσ

γ
(y − ν) = E[X] + cov[X,Y]

var[Y] (y − E[Y]), and the result is thus
directly seen without further computation. 2
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